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ABSTRACT

STOCHASTIC DYNAMIC OPTIMIZATION MODELS
FOR SOCIETAL RESOURCE ALLOCATION

FEBRUARY 2014

ARMAGAN BAYRAM

B.Sc., ISTANBUL TECHNICAL UNIVERSITY

M.Sc., ISTANBUL TECHNICAL UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Senay Solak

We study a class of stochastic resource allocation problems that specifically deals

with effective utilization of resources in the interest of social value creation. These

problems are treated as a separate class of problems mainly due to the nonprofit

nature of the application areas, as well as the abstract structure of social value def-

inition. As part of our analysis of these unique characteristics in societal resource

allocation, we consider two major application areas involving such decisions.

The first application area deals with resource allocations for foreclosed housing ac-

quisitions as part of the response to the foreclosure crisis in the U.S. Two stochastic

dynamic models are developed and analyzed for these types of problems. In the first

model, we consider strategic resource allocation decisions by community development

corporations (CDCs), which aim to minimize the negative effects of foreclosures by ac-

quiring, redeveloping and selling foreclosed properties in their service areas. We model

iv



www.manaraa.com

this strategic decision process through different types of stochastic mixed-integer pro-

gramming formulations, and present alternative solution approaches. We also apply

the models to real-world data obtained through interactions with a CDC, and perform

both policy related and computational analyses. Based on these analyses, we present

some general policy insights involving tradeoffs between different societal objectives,

and also discuss the efficiency of exact and heuristic solution approaches for the mod-

els. In the second model, we consider a tactical resource allocation problem, and

identify socially optimal policies for CDCs in dynamically selecting foreclosed prop-

erties for acquisition as they become available over time. The analytical results based

on a dynamic programming model are then implemented in a case study involving a

CDC, and social return based measures defining selectivity rates at different budget

levels are specified.

The second application area involves dynamic portfolio management approaches

for optimization of surgical team compositions in robotic surgeries. For this problem,

we develop a stochastic dynamic model to identify policies for optimal team configu-

rations, where optimality is defined based on the minimum experience level required

to achieve the maximum attainable performance over all ranges of feasible experience

measures. We derive individual and dependent performance values of each surgical

team member by using data on operating room time and team member experience,

and then use them as inputs to a stochastic programming based framework that we

develop. Several insights and guidelines for dynamic staff allocation to surgical teams

are then proposed based on the analytical and numerical results derived from the

model.

v
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CHAPTER 1

INTRODUCTION

We study resource allocation problems where mainly social benefits and non-

quantitative objectives are considered in determining the allocation of the resources.

Resource allocation can be defined as the systematic use of scarce resources, especially

in the near term, to achieve goals for the future.

Because of its social characteristics, our problem falls into the research area of

community-based operations research (CBOR) which is a new sub-discipline within

operations research and the management sciences. CBOR was created to provide

operations research expertise to public sector that addresses societal problems such

as poverty, homelessness and equity. Like other areas of public sector operations re-

search, the objective function is not directly profit maximization or cost minimization,

rather it is mostly related to the maximization of social utility and welfare (Johnson,

2011).

In general, CBOR is a well-studied field of problem structuring methods and soft

systems methodologies, but quantitative focus involving many of operations research

methodologies has been limited. On the other hand, given that most of the real-

world resource allocation problems include uncertainty in the problem parameters,

stochastic optimization is one of the quantitative tools that can be used to model

societal resource allocation problems.

In this thesis, we propose stochastic dynamic modeling methodologies to solve

certain societal problems based on two motivating applications. The non-financial

structure of the objectives, which require an additional phase of objective definition
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in model development, as well as the similarity of the implemented methodologies in

these problems form the common elements among a seemingly diverse set of applica-

tion areas.

In the remainder of this chapter we describe the methodologies that we utilize in

our analyses and present the specifics of the two motivating applications that form

the focus of our research.

1.1 Methodology

1.1.1 Stochastic Programming

Stochastic programming (SP) with recourse is a method for solving optimization

problems where there is uncertainty. Dantzig (1955) was the first to introduce a

recourse model where the solution could be adapted based on the outcome of a random

event. Since then, the field of SP has grown and become an important tool for

optimization under uncertainty.

A stochastic program results when some of the parameters in a mathematical pro-

gram are described as random variables. A key assumption in SP is that probability

distributions of these random parameters are known. The objective of SP is to iden-

tify a feasible policy that minimizes or maximizes the expected value of a function

of decision variables and parameters over all possible realizations of the random vari-

ables. The most widely studied SP models are two-stage models. In these problems,

a decision is made at the beginning of the first stage without any certainty as to

the values of the random parameters. At the beginning of the second stage, after

observations regarding the uncertain parameters are made during the first stage, a

recourse decision can be made to compensate for or fine-tune the first-stage action.

The optimal policy for a two stage model includes the best decision in the first stage

considering the possible realizations of the random parameters, as well as the best

recourse decision in the second stage for each possible realization. A generalization
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of the two-stage problems is multistage SP models. In these models, a sequential

structure exists, in which certain decisions are made at the beginning of each stage,

followed by observations of the random parameters during that stage.

1.1.2 Dynamic Programming

Dynamic programming is a methodology for sequential decision making over pe-

riods which was originally used in the 1940s by Richard Bellman to describe the

process of solving problems where one needs to find the best decisions one after an-

other Puterman (1994). At each decision epoch, a decision maker observes the state

of a system and chooses an action, and then gets an immediate reward and moves to

a new state according to the probability distribution determined by the action choice.

Because of the dynamical structure of the problem, this process continues, but now

the system may be in a different state and there may be a different set of actions.

Different from stochastic programming, dynamic programming involves many deci-

sion epochs and few constraints, so solution approaches proposed for these methods

are different from each other. The value of each state at a given time can be found

by working backwards, using a recursive relationship called the Bellman equation.

Bellman’s equation is useful because it reduces the choice of a sequence of decision

rules to a sequence of choices for the control variable. There are different algorithms

to solve dynamic programming problems suitability of which depend on the planning

horizon. For instance, backward induction is a methodology used for finite horizon

problems, while it is not appropriate for infinite horizon problems as there is no last

period in which to start. A dynamic programming model is symbolically represented

in Figure 1.1.
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Current Decision Epoch Next Decision Epoch

Action Action

Reward Reward

Figure 1.1. Symbolic representation of a dynamic programming problem.

1.2 Motivating Application: Nonprofit Foreclosed Housing

Acquisition

The recent U.S. economic recession has had adverse effects in all sectors of the

economy, particularly residential housing. A root cause of the recession was a dra-

matic increase in mortgage foreclosures, originating in decreases in home price appre-

ciation that amplified the effects of increases in mortgage rates and the number of

risky mortgage origination (Bernanke, 2008). The impacts of this crisis on the U.S.

housing market have been broad and profound: there have been substantial decreases

in housing values, home equity, home sales, and total housing starts (Joint Center

for Housing Studies, 2009). As a result, home foreclosures have resulted in massive

losses of consumer wealth: on average U.S. households lost $2.2 trillion in home value

over the last four years, with losses totaling around $3 trillion in 2011 (CNN, 2009;

Business Insider, 2012).

Policies to mitigate these losses include efforts to reduce the number of foreclosed

homes in neighborhoods, which in turn will result in the appreciation of home prices

and stabilization of the housing market. For example, U.S. Department of Housing

and Urban Development has established a neighborhood stabilization program, which

provides billions of dollars as assistance to state and local governments in the acqui-

sition and rehabilitation of foreclosed property (HUD, 2008). Similar initiatives also

exist at local or regional levels in many states. Key actors in these efforts with access
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to several federal and state funds are nonprofit community development corporations

(CDCs), which acquire and rehabilitate foreclosed properties in their service areas

using resources available to them. CDCs are local organizations that provide services

and engage in other activities to build and revive neighborhoods. When a foreclosed

property is put on sale, an important advantage for CDCs and other similar entities

is their priority in making offers on the property. This is due to requirements put in

place by most financial institutions through the National First Look Program, which

provide owner occupants and public entities that are committed to the community an

early opportunity to bid for a foreclosed property. As part of this policy, only offers

from owner occupants and buyers using public funds are considered during the first

15 days a property is on the market, and offers from investors are considered only

after the first 15 days have passed. This allows for a higher likelihood of a successful

offer for CDCs due to the relatively fewer competitors in the process (Axel-Lute and

Hersh, 2011).

CDCs exist in nearly every major urban area of the United States with approx-

imately 5,000 CDCs spread throughout all 50 states (Community Wealth, 2012).

Given the large number of CDCs operating in different parts of the U.S., the decision

problems they face in their efforts to respond to the foreclosure problem have impli-

cations for the overall economy and public good. This is especially of importance,

as the foreclosure crisis is not yet over, and the limited resources need to be used as

effectively as possible to meet the challenges of the current or any other future crisis.

1.2.1 Strategic Societal Resource Allocation

In this motivating application area, we focus on the strategic resource allocation

problem faced by CDCs. Strategic resource allocations need to consider potential

availability and acquisitions of individual foreclosed units in the future, as well as

the social impacts associated with these acquisitions which are all redeveloped and
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placed on market for sale. Given that all acquired properties are redeveloped, by

acquisition we imply both the acquisition and redevelopment activities on a property

unless noted otherwise in the study. Another key issue is that all these decisions are

made under uncertainty, as several relevant inputs for the decision making process

are determined by the state of the local and national economy, which is inherently

uncertain. For example, the number of foreclosures to occur in a given region over

the planning horizon, the purchase price of a foreclosed property, as well as the value

generated by an acquired property are directly related to the economic conditions,

and thus are not known in advance. Our decision framework is intended to capture

these complexities in determining optimal resource allocations to different geograph-

ical regions by considering the specific acquisition decisions to be made in response

to different realizations of future uncertainty. Our objective in this application is to

develop tractable decision models whose solutions can provide general guidance to

CDCs as they attempt to define priorities and budget allocations for residential real

estate investments, which are intended to minimize the negative local impacts associ-

ated with housing foreclosures. To this end, we develop strategic resource allocation

models under uncertainty, apply these multi-period stochastic models to a case study

of a community-based organization, and discuss the solutions with respect to their

policy implications and computational efficiency.

1.2.2 Tactical Societal Resource Allocation

In the second part of this motivating application we focus on tactical decisions that

are led by CDCs in urban neighborhoods to support neighborhood stabilization and

revitalization. Since the scale of the foreclosure crisis in most neighborhoods exceeds

the response capacity of any particular CDC, our fundamental research question is

the following: Given resource limitations and the uncertainty on the impacts of the
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foreclosure crisis, what are socially optimal acquisition policies that a CDC should

implement while selecting foreclosed properties for potential acquisition?

A CDC seeking to purchase a foreclosed property faces a decision problem under

uncertainty: should they make an offer on a given property - with a certain proba-

bility of success -, or should they wait for another property which may have a higher

value for neighborhood stabilization? And if an offer is to be made on a property,

what should be the offer amount? These decision alternatives are complicated by the

fact that a property with a greater probability of high social returns may have higher

costs than one with a lower probability of high social returns. Our approach to this

problem involves a dynamic and stochastic resource allocation model where a limited

budget is allocated dynamically to maintain an optimal portfolio of acquired prop-

erties. Each property has some associated cost defined by the dollar value required

for purchase, and return defined by a social utility value, also defined in dollars. The

problem involves stochasticity due to the uncertainty in the costs and returns of the

properties, as well as their availability based on the conditions of the housing market

and foreclosures. The costs and returns of properties are characterized by probability

distributions, and are known for a property that has become available for potential

bidding or acquisition. Upon observing the cost and return value of a property that

arrives randomly over time, a CDC decides on whether to make an offer on the prop-

erty, and if so how much to offer. Through our analysis, we obtain analytical and

numerical results that characterize the optimal policies for a CDC under the cases

with and without a deadline at which time the budget expires.

1.3 Motivating Application: Team Allocation in Robotic

Surgery

Robotic surgery is a method to perform surgery using very small tools attached to

a robotic arm where the surgeon controls the robotic arm through a computer. The
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use of robotic surgery has many advantages over open or conventional surgeries, as it

results in reduced surgical error rates, shorter recovery times, and reduced levels of

patient scarring and other lasting effects of surgery. In 1985 a robot, the Unimation

Puma 200, was first used in a surgery to place a needle and then in 1988 a robot was

developed to perform prostatic surgery. Four years later in 1992, another robotic sys-

tem was introduced to mill out precise fittings in the femur for hip replacement (Ebme

Articles, 2013). Nowadays, the Da Vinci surgical system, which is the most sophisti-

cated robotic platform designed to expand a surgeon’s capabilities, is widely used in

a variety of operations such as gynecologic, cardiovascular, or urological surgeries.

Applications of robotic surgery and its importance have increased dramatically

over time, and more than 300 hospitals across the United States currently use surgical

robots in their procedures (GLG, 2013). Besides its benefits, the robotic systems are

costly investments and have complex, time-consuming setups, requiring additional

training or experience for the entire surgery team (Lanfranco et al., 2004; Wall et al.,

2008). More specifically, each robotic system ranges in price from $1 million to $2.5

million, and the use of robotic surgery increases the cost of procedures anywhere from

$3,000 to $8,000 (Creators.com, 2010).

Given the high costs and the increasingly common usage of robots in surgeries,

it has become essential to evaluate operating room efficiency and cost effectiveness

in these types of surgeries. It is clear that the composition of the surgical team,

and the experience and competence of each team member play an important role in

all surgeries, but it is especially of significance in robotic surgery. This is because

the surgeon is not immediately at the bedside during the major components of the

procedure, and several steps are performed by other team members during the surgery.

Such steps, which require skill development by all team members, include docking of

the robot, some surgical manipulation, and troubleshooting for minor technical and

operational aspects of this highly sophisticated procedure.
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The surgical team always includes a primary surgeon, who operates the surgery

and uses the robot as necessary. A first assistant who is usually a designated physi-

cian assistant (PA) but sometimes another physician, assists the surgeon during the

surgery, and is mainly responsible for robot docking and positioning. A nurse anes-

thetist provides anesthesia care during the surgery. The surgical team also includes a

scrub technician, referred to as a scrub tech (ST), who works under the supervision

of the surgeon, and handles the instruments, scrubs, medications, and other supplies

during the surgical procedure. In addition, a circulating nurse (CN) “circulates” the

operating room, ensuring proper procedures are being followed. Some of his/her re-

sponsibilities include preparing the operating room and all the required equipment,

staying in the room during the surgery, and aiding in counting the equipment after the

surgery. These tasks that each team member perform in robotic surgery differ with

respect to those in a classical surgery, mainly due to the surgeon not being directly

performing the operation, as well as due to the different procedures and equipments

used.

Overall, the role that each surgical team member plays during the surgery is cru-

cial and essential. Moreover, given the higher level of dependence of tasks in robotic

surgery, any mishaps by any member can affect the performance of the entire team.

Hence, the composition of the surgical team, specifically the joint experience, compe-

tence and cohesion among surgical team members are key determinants of efficiency

and effectiveness in a robotic surgery. In many cases, failure to work together ef-

fectively has been cited as a common cause of adverse events and errors in surgery

(Jeffcott, 2009). On the other hand, it is important to note that the ability to work

as a team is a dynamic behavior that is acquired over time.

Our analysis in this application is based on the observation that although the

individual experiences of team members make a difference in a robotic surgery, there

may be an optimal combination of experiences and an optimal team composition,
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defined by the individual and joint number of surgeries performed. Considering this

observation, in this study we aim to answer the following questions: (1) Given a

range of potential experience measures for each team member, how would operating

room performance vary as a function of these experience measures, and what is the

marginal value of an increase in the experience of a specific team member? (2) What

is an optimal team configuration, where optimality is defined based on the minimum

experience level required to achieve the maximum attainable performance over all

ranges of feasible experience measures?

Our methodology to answer these questions involve several statistical analyses, as

well as a stochastic programming approach that is used to identify optimal team con-

figurations by taking into account the dynamics of learning and experience building

over time. The analyses are based on actual robotic surgery data involving records

of around 400 robotic sacrocolpopexy operations, i.e. urologic and pelvic surgeries.

1.4 A Cohesive Framework for the Two Motivating Applica-

tions

In this thesis, we combine the problems described as part of the two motivat-

ing applications above under the general framework of stochastic dynamic societal

resource allocation models. More specifically, we note that the objectives in these

applications involve social dimensions which are different from classical applications

with cost or profit based objectives. The social perspective in these problems re-

quires additional phases in model building which involve definitions of social value.

This is typically not necessary in cost based optimization. Another common element

in the presented analyses in this thesis is the set of methodological approaches used,

as all three problems are modeled and solved using stochastic dynamic optimization

procedures.
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Figure 1.2. Conceptual map showing the relationship between the applications
studied in this thesis.

In the foreclosed housing acquisition problem, a number of social objectives are

considered. For the strategic planning model, these include measures such as collec-

tive efficacy, equity based on budget allocation rate, social utility and equity based on

owner occupation of properties, while the tactical planning model uses only a social

utility measure. Note that the strategic and tactical models for the foreclosed hous-

ing acquisition problem are connected and sequential. A CDC would first perform

strategic planning involving budget allocations to different neighborhoods, and then

given the budget allocations, tactical acquisition decisions for individual properties

are made. These two decision problems are both addressed through stochastic dy-

namic optimization models, which is the general methodological structure combining

all the applications in the thesis.

In our second application, the objective involves the maximization of performance

in robotic surgical operations. Performance in this setting is defined by operating

room time which is a proxy for health and safety based social value. More specifically,
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reduced operating room time through better utilization of team members implies fewer

complications and faster recovery periods, which directly relate to benefits realized

for patients or the society in general. The resulting problem is modeled and solved

through a stochastic programming approach, which again represents the stochastic

dynamic structure in the applications studied in this thesis.

To better display the cohesive framework for the two motivating applications in

this thesis, in Figure 1.2 we show a conceptual map that we envision for stochastic

dynamic societal resource allocation problems in general, which also displays where

our three analyses fall within this framework. We assume that stochastic dynamic

resource allocation problems with social objectives can be categorized based on the

types of application area defined for community based operations research. To this

end, Johnson and Smilowitz (2007) provide a taxonomy consisting of four major areas:

nonprofit management, community development, public health and safety, and human

services. Each of these application areas involves of a variety of resource allocation

problems. Nonprofit management points out common problems in management of

community-based or community-oriented service providers (Berenguer, 2013), while

community development applications address economic growth and welfare improve-

ment of segregated communities. Some subareas of community development can

be listed as housing, community/urban planning, and transportation (Johnson and

Smilowitz, 2007). One sample resource allocation study in this area includes Johnson

et al. (2010), where the authors propose a deterministic and static multi-objective

integer program for foreclosed housing acquisition and redevelopment by allocating

available resources to different acquisitions. In public health and safety, general issues

related to the public wellness and security are covered, such as healthcare, criminal

justice, food insecurity, emergency studies, and dangerous/undesirable facility loca-

tion. Aaby et al. (2006) and Bodily (1978) are two resource allocation related studies

in the literature related to public health. In the first paper, Aaby et al. (2006) propose
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models for clinics to improve resource planning activities in their contagious disease

management decisions, where the authors use discrete event simulations and queuing

models as their methodologies. Bodily (1978) investigate a police sector planning

problem where the workloads of the police officers are equalized by satisfying service

equity and system efficiency. As another major area, humanitarian services typically

include studies in public education, family supportive services, humanitarian logistics,

and public libraries. Related to this field of study, Campbell et al. (2008) propose

models to ensure both equity and efficiency during the allocation of the resources after

a disaster. Another example involves the library vehicle fleet management problem

studied by Francis et al. (2006), where the authors build models to improve vehicle

routing operations and management by considering budget limitations of the library.

Our first application in the thesis can be placed in the intersection of nonprofit

management and community development, because the foreclosed housing acquisition

activities of a CDC can be classified as being related to both nonprofit management

and housing/urban planning. On the other hand, we classify our second application

under the public health and safety application area, as it involves a social value based

implementation based on practice at a private hospital. Overall, as depicted through

Figure 1.2, the three studies presented in this paper fall under the umbrella of the

larger class of stochastic dynamic societal resource allocation problems, which con-

stitute relatively small but relevant components - especially as the first such models

in the corresponding application areas.
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CHAPTER 2

LITERATURE REVIEW

In this section, we discuss the relevant literature separately for the two main mo-

tivating applications in our analysis. To this end, we first present a summary of the

relevant literature on the foreclosed housing acquisition problem, and then discuss

related studies in surgical team allocation. The discussions also include references to

dynamic stochastic resource allocation problems in general. In addition, we also dis-

cuss in this chapter how this thesis contributes to the corresponding areas of research.

2.1 Related Research on Foreclosed Housing Acquisition

The foreclosed housing acquisition problem faced by CDCs is a stochastic resource

allocation problem where a limited budget is allocated to maximize expected social re-

turns. One stream of research on these problems involves dynamic resource allocation

decisions on a set of given investment options, attributes of which evolve stochasti-

cally over time. Some examples to these studies include Mild and Salo (2009), where

the authors develop a multi-criteria decision model for the allocation of resources to

road maintenance activities, and Loch and Kavadias (2002), who develop a dynamic

model for allocating resources to different new product development projects and

identify analytical solutions by considering different types of return functions. Bert-

simas and Popescu (2003) and Calafiore (2008) are other examples where dynamic

policies are investigated for allocating scarce resources to stochastic demand through

approximation based procedures.
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In addition to these studies, Chalabi et al. (2008) propose a two-stage stochastic

mathematical programming formulation to optimally allocate resources within and

between healthcare programs when there is an exogenous budget and the parameters

of the healthcare models are uncertain. Chalabi et al. (2008) limit their analysis to

a small-scale two stage formulation without any algorithmic discussion or numerical

analysis. In contrast to Solak et al. (2010), our first application addresses multiple

objectives, including a measure of social utility, and uses novel return functions.

As a stochastic resource allocation model with a multi-objective structure, Medaglia

et al. (2007) describe allocating limited resources to R&D projects by considering

multi-criteria under uncertainty. Cheng et al. (2003) propose an investment strat-

egy model for firms based on two-stage multi-objective optimization framework. The

problem formulation leads to a multi-objective Markov decision problem representa-

tion, which is used to define Pareto optimal design strategies. Our first application

extends the limited scope of Medaglia et al. (2007), which is static and uses a Monte

Carlo simulation analysis, and extends that of Cheng et al. (2003) through the use of

multi-stage stochastic programming.

Given the knapsack-type offer/no-offer decisions on properties that become avail-

able over time in the foreclosed housing acquisition decision process, a more relevant

stream of research is the literature on dynamic stochastic knapsack problems. These

problems have been formally defined by Kleywegt and Papastavrou (1998), where

the authors study optimal acceptance policies for equal-sized items that arrive ran-

domly over time with stochastic return structures. This framework is then extended

by Kleywegt and Papastavrou (2001) to include items with random sizes. These

two papers form the basis for some other studies in the literature, which involve

models and solution approaches proposed for various applications with a dynamic

stochastic knapsack structure. One such application is Kilic et al. (2010), where the

authors study a model for raw material allocation in food production and propose a
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heuristic algorithm to derive an optimal policy. Similarly, Dizdar et al. (2011) derive

simple policies under some limiting assumptions for revenue-maximization based gen-

eral resource allocation problems. In another general analysis, Lu (2005) proposes a

computational procedure to calculate the optimal policy for infinite horizon dynamic

stochastic knapsack problems. In addition, Lin et al. (2008) apply stochastic knapsack

type models in revenue management and dynamic pricing, while Nikolaev and Jacob-

son (2010) study resource allocation to a random number of jobs and present optimal

policies for the sequential stochastic assignment problem. All these studies involve

variations of the dynamic stochastic knapsack problem with different characteristics

or algorithmic implementations in various applications. Our second application adds

to this stream of research by considering a distinct application in the nonprofit sector,

and extends this general framework by considering additional decisions, such as the

selection of an overbid rate when making offers to selected foreclosed properties.

For housing policy based literature, we note that while foreclosures have many

negative impacts on neighborhoods Kingsley et al. (2009), data limitations generally

result in analyses of property value impacts of foreclosures. Campbell et al. (2009) use

regression analyses of house prices and extend their analysis to estimate the total lost

value from properties proximate to a foreclosed unit. Harding et al. (2009) estimate

different effects on sales of non-distressed properties also by using regression analysis

and present findings related to specific features of neighborhoods, foreclosed units, or

the surrounding market conditions. Harding et al. (2009), along with Schuetz et al.

(2008), also assess the impact of multiple foreclosures in an area, where the authors

conclude that the number of proximate foreclosures generally multiplies the effects

on neighboring house prices. In contrast to these descriptive and exploratory studies,

our prescriptive decision models are intended to mitigate these negative impacts.

There also exist some related works on CDCs and their involvement in housing

markets through property acquisitions. Swanstrom et al. (2009) describe acquisi-
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tion strategies that CDCs employ to acquire and redevelop foreclosed housing, and

NeighborWorks (2009) describes the difference of these strategies from those used for

traditional community development. Key challenges encountered by CDCs during

implementation of foreclosure acquisition and redevelopment strategies are investi-

gated by Bratt (2009). Based on the observations from those studies, Simon (2009)

describes some suggestions for CDCs and policy makers to implement. We add to this

qualitative literature through a quantitative rigorous approach aimed to help CDCs

in their long term strategic decision processes.

A relevant stream of research for the traditional housing market that focuses

on purchasing strategies also exists. Such an analysis is performed by Drew et al.

(2001), where the authors use regression analysis to measure competitiveness and

offer a purchasing strategy model in selecting which properties to bid for. In another

related paper, Yao and Zhang (2005) develop optimal dynamic portfolio decisions

on housing investments for individual investors over a lifetime. Different from us,

they build a long term economic model using a dynamic programming structure,

and present some numerical analysis. Unlike these papers, we explicitly consider

stochasticity in a portfolio model involving both near and long term decisions, as

well as multiple objectives, in our first application. Moreover, we specifically address

both the budget allocation and foreclosed property acquisition decisions for CDCs

with social objectives, which differs significantly from the decisions of an individual

investor.

There are a few recent papers that directly address problems similar to those

we study in this thesis. These involve Johnson et al. (2010), where the authors

describe the formulation and solution of a deterministic and static multi-objective

integer program for foreclosed housing acquisition and redevelopment, applied to

multifamily foreclosed housing in a small city. Bayram et al. (2011a) and Bayram et al.

(2011b) investigate optimal policies for resource allocation and foreclosed property
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acquisition under some restrictive assumptions such as dominancy, in which the social

utility values of different property categories are assumed to follow a dominancy based

relationship throughout the planning period. By building on the framework discussed

in these papers, we model and analyze the dynamic stochastic decision process for

nonprofit housing investments over multiple periods.

2.2 Related Research on Surgical Team Allocation

The surgical team allocation problem we study falls into the general category of

performance based team allocation problems. We summarize some relevant descrip-

tive and prescriptive models for team performance and discuss their applicability to

the problem we study. There are many papers involving data based analyses of med-

ical team performance, where the factors affecting team performance are determined

through statistical analysis. Cassera et al. (2009) and Burtscher et al. (2011) show

the importance of information sharing during a surgery, and suggests enhancing com-

munication to improve the overall surgical team performance. In addition to these

studies, Ortega et al. (2013) note that team learning through experience has a signifi-

cant effect on nurse performances. Fransen et al. (2012) also highlight the importance

of experience and team training, specifically focusing on obstetric surgeries. Different

from these descriptive studies, in our study we provide a team performance function

based on statistical analysis, and utilize this function to prescribe an optimal team

composition structure.

Although there exist some studies that focus on optimal team composition to

maximize expected utility, Zakarian and Kusiak (1999) note that multi-functional

team selection/formation process is a complex problem for which comprehensive an-

alytical approaches are difficult to obtain. Hence, studies in this area are mostly

limited approaches. Some studies consider team formation by using the analytical

hierarchy process (AHP), where they solve a linear programming model to find opti-
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mal team compositions. As an example, Chen and Lin (2004) develop an analytical

hierarchy model to aid in establishing an efficient multifunctional team by selecting

team members for each project according to their skills. Zakarian and Kusiak (1999)

also develop a methodology which is based on the AHP approach and the quality

function deployment method for determining optimal team formations. In another

paper, Zhang and Zhang (2013) propose a multi-objective team formation optimiza-

tion model for new product development projects by considering capabilities and

interpersonal relationships of all members, and again address the problem through

AHP. Distinct from such studies, in our application we develop a stochastic dynamic

team optimization model and address the problem through stochastic programming

methods.

For additional relevant research, Slomp and Suresh (2005) build a multi-objective

goal programming model for the problem of assigning operators to teams that work

in three daily-shift systems. They propose a two phase solution approach in which

the shift systems, machines and the sizes of each shift team are identified first, and

in the second phase the team members are assigned to the corresponding teams.

Team formation models are also applicable to the sport teams. For example, Ahmed

et al. (2012) define a constrained multi-objective optimization model in selection of

players for a cricket team using a finite budget. The authors propose a multi-objective

evolutionary metaheuristic to optimize the overall batting and bowling strength of a

team with eleven players. Unlike these papers, we identify the optimal assignment of

available surgery team members to each operation dynamically over time, in order to

improve expected performance over all operations by considering the uncertainty in

observed performances.

To the best of our knowledge, there is no literature that specifically addresses

optimal team formation in healthcare applications, where the team assignments are

made according to experiences and performances of team members. Team allocation
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is typically integrated into scheduling models, where the performance of all physicians

and nurses are assumed to be the same. On the other hand, there are several studies

on nurse and physician scheduling, where cost minimization is mainly considered. We

summarize below some of these team scheduling and planning studies, and how our

study complements these analyses.

As an example to assignment and staffing problems in healthcare, Stolletz and

Brunner (2011) addresses a shift scheduling problem in which physicians are assigned

to demand periods to minimize the paid out hours by integrating physician preferences

and fairness aspects into the scheduling model. In another paper, Choi and Wilhelm

(2013) develop a block scheduling policy by proposing a newsvendor-based model in

order to minimize the sum of expected lateness and earliness costs in surgeries. In

addition to these studies, Wright and Mahar (2012) and Dowsland (1998) develop

scheduling models where the objective is to ensure that enough nurses are on duty

at all times while taking account individual preferences and requests for days off to

treat all employees fairly. Another relevant paper is a literature review on operating

room planning and scheduling, where the authors evaluate and list the literature on

multiple fields that are related to either the problem setting or the technical features

(Cardoen et al., 2010). As an optimal team configuration study, Harper et al. (2009)

propose a method to find optimal size and skill-mixes for nursing teams to match with

patient needs through combining simulation and optimization tools. They consider

the demand uncertainty and dynamically identify the size and mix of the teams

based on changing patient needs over time. In addition, Bordoloi and Weatherby

(1999) present a linear program to determine the optimum mix of different staff

categories for a hospital medical unit, where cost is minimized subject to constraints

of patient demand and minimum staffing policies. Different from these papers, in our

application we assign team members based on their experiences in order to maximize
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the minimum performance over all teams, where surgery time is taken as the main

performance measure.
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CHAPTER 3

STRATEGIC SOCIETAL RESOURCE ALLOCATION IN

FORECLOSED HOUSING ACQUISITION

Consider a CDC making strategic decisions in advance of a planning horizon for

their property acquisition investments. These decisions may involve prioritization

and resource allocation to individual geographically distinct service areas, which we

refer to as ‘neighborhoods’. It is assumed that the strategic resource allocation deci-

sions will be made at the beginning of the planning horizon and certain information

will become available over subsequent planning periods. Tactical acquisition deci-

sions, i.e. those involving specific purchasing decisions for available properties, will

be made based on this information as well as the probabilistic information on social

and economic impacts of each acquisition. The resource in our problem refers to an

available budget, while the planning periods are typically defined in years. Hence,

such terms are used interchangeably throughout the study.

A more specific representation of this general decision process is depicted visually

in Figure 3.1, which can be described as follows. The decision maker, i.e. the CDC,

initially decides on a tentative budget allocation to each neighborhood. Subsequently,

properties become available for acquisition, i.e. foreclosures occur over time, and

their acquisition costs become known to the CDC. Once this information is available,

individual acquisition decisions are made under uncertain return characteristics. The

process can continue for multiple periods where resource reallocations can take place

based on any new information that becomes available. Hence, depending on the

planning horizon considered, this process can be represented through a two-stage or
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Figure 3.1. The general decision process for the strategic foreclosed housing acqui-
sition problem.

multi-stage decision structure. The models we develop capture these different levels

of complexity in the problem.

A key assumption in this strategic planning framework is that information on all

foreclosed properties, particularly acquisition costs, in a particular planning period

is available immediately after the resource allocation decision is made, and tactical

acquisition decisions are made based on such information. In reality, however, real

estate development is a dynamic process, and tactical acquisitions are performed

over time as properties become available. Given the strategic planning nature of the

problem and the relatively small gap in dynamic and static tactical decision making

in this setting, we believe that this assumption does not detract significantly from

the validity of the model.

The goal in the foreclosed housing acquisition problem (FHAP) is to decide on an

initial strategic resource allocation plan such that an expected value function based

on multiple potentially conflicting criteria is optimized. In other words, the problem

is:

max
x∈X

EΨ

[
max
h∈H(x)

[G(x, h,Ψ)]

]
(3.1)

where G(x, h,Ψ) is a function based on multiple objectives, with x ∈ X representing

the resource allocation decisions that take on values in the feasible set X , h ∈ H(x)

modeling the tactical acquisitions to be made based on the allocations as defined
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by the set H(x), and Ψ being a vector of random parameters with known joint

probability distributions. This vector of random parameters corresponds to costs,

availabilities and returns of properties in the service area of a CDC. To allow for a

tractable stochastic programming approach, we assume discrete distributions of these

random parameters, and refer to each possible realization ψ ∈ Ψ as a scenario with

a corresponding probability pψ. Using this framework, we develop two stochastic

programming approaches to the problem with different levels of complexity, which

we describe in detail below. We note here that our models are based on interac-

tions with CDCs and are thus informed by an inclusive, and cross-disciplinary view

of community-based or community-oriented decision modeling.

3.1 Model I: FHAP with Simple Resource Allocation

(FHAP-S)

First, we consider a basic strategic resource allocation framework that is typically

applicable for annual planning. While an annual timeline may be short for most

strategic planning problems, the CDC operations and specifically fund availabilities

are strictly dependent on the condition of the economy and government policies.

Hence, a very long strategic planning framework is not typical for these organizations.

On the other hand, our general modeling framework is flexible enough to handle

longer planning periods, and indeed the more advanced models in Section 3.2 are

typically applicable to a multi-year planning structure. In FHAP with simple resource

allocation, which we refer to as FHAP-S, we consider a planning horizon consisting

of two decision periods where initially a budget allocation decision is made, followed

by acquisition decisions determined according to realizations of foreclosed property

availability, costs and expected returns.

We assume that a CDC can acquire units from a set of foreclosed properties N .

Each property is associated with a neighborhood i ∈ I, based on its geographic lo-
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cation, and a category l ∈ L, based on a pre-defined categorization scheme such that

properties in each category have similar characteristics some of which are stochas-

tic and dependent on external market environments. The CDC wants to determine

the optimal amount of budget xi to be allocated to neighborhood i given a limited

available budget B, and potential future acquisition decisions hψil. The acquisition

decisions hψil denote the number of properties of category l ∈ L acquired from neigh-

borhood i ∈ I under scenario ψ ∈ Ψ.

3.1.1 Model Inputs

Model formulations for our decision framework involve several probabilistic and

deterministic parameters. While we describe them in detail in this section, a summary

list of these parameters is also provided in Appendix A. In the following paragraphs,

we discuss these model inputs, and based on analysis of numerical data, we note for

each parameter as to why that parameter is treated in a deterministic or stochastic

manner.

3.1.1.1 Stochastic Parameters

The uncertainty in the modeling framework is represented through the attributes

of the property categories l ∈ L, which are defined by three stochastic parame-

ters, corresponding to costs, returns and availabilities of foreclosed properties. More

specifically, we let cilψ denote the acquisition and redevelopment cost for a category

l property in neighborhood i under scenario ψ. Note that for clarity in notation,

the scenario index ψ in the stochastic parameters is denoted as a subscript, while a

superscript is used for decision variables. When a foreclosed property is put on sale

by the lender, it has an associated asking price, usually based on the price opinion

of a broker with experience in the area. In addition to this purchasing cost, for each

such property, CDCs perform an analysis to estimate the redevelopment costs for the

property. The cost parameter cilψ refers to the sum of these two cost components,
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and is defined by a probability distribution based on historical data. We demonstrate

the observed variation in acquisition and redevelopment costs through a histogram

of these costs for a specific category of properties in a given neighborhood within the

service area of the CDC that we obtained operational data from. The histogram is

included in Appendix A, where the distribution of these costs suggests a need for their

consideration as a stochastic parameter. While the numerical analyses performed in

Section 3.4 are based on data from 2011 where the economy was consistently in a poor

state, dynamics based on the state of the economy and the markets are important in

estimating the probability distribution of future acquisition and redevelopment costs.

Clearly, an improving trend in the economy would imply a higher likelihood of higher

costs, while a slowing economy would result in the opposite. The dynamic nature of

residential property prices, which can be used as a proxy for the acquisition and re-

development costs of foreclosed properties, is demonstrated in Appendix A through a

plot of U.S. house prices over time. These dynamics can be captured in our modeling

framework by defining scenario probabilities such that they reflect potential trending

effects due to market factors.

The second stochastic parameter µilψ denotes the social return from the acquisition

of a category l property in neighborhood i under scenario ψ. Foreclosures have signifi-

cant effects on social and community life of the surrounding neighborhoods since they

result in depreciation of a neighborhood’s image and residents’ quality of life (Immer-

gluck and Smith, 2006). Therefore the acquisition and redevelopment of foreclosed

properties yield in social value for the society, where estimating this social return is

clearly difficult. Johnson et al. (2013) highlight this challenge, and develop a measure

validated by some CDCs, which is based on the impact of the acquisition of a fore-

closed property on the appreciation of the value of nearby properties. More formally,

the property value impact (PVI) measure is defined as the expected impact on proxi-

mate property values from a given foreclosure. This measure is directly related to the
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geographical location of a property, and can be calculated for each foreclosed property

through a procedure described by Johnson et al. (2013), where the authors calculate

an approximation to the expected total property value losses associated with a prop-

erty by using Markov chains and cost-benefit analysis. PVIs are the results of several

determinants which are associated with foreclosures, i.e. increased blight, crime and

social disorder (Harding et al., 2009). While any social return measure can be used

when implementing the decision models, we utilize the PVI values to represent the

social returns from the acquisition of a foreclosed property in our empirical analysis.

PVI values are calculated as a dollar amount by Johnson et al. (2013), however in the

strategic foreclosed acquisition problem analyzed in Chapter 3 we consider normalized

values that vary between 0 and 1. This normalization is achieved dividing all PVI

values by the maximum observed PVI in the data set directly obtained from Johnson

et al. (2013). Note that the PVI measure is assumed to be a random variable, where

a histogram based on a sample set of calculated PVI values is depicted in Figure A.2

in Appendix A. The PVI values in the figures are distributed uniformly between 0.85

and 1.0. Similar to the acquisition and redevelopment costs, the probability distribu-

tion of PVI values is defined based on historical data. A statistical analysis of costs

and PVI values has shown almost no correlation between the two within the same

category of properties, hence the stochastic process for social returns is assumed to be

independent of the costs in the numerical study discussed later in the study. In Ap-

pendix A we show how PVI values vary for a set of properties considered for potential

acquisition by the partner CDC, as well as how the PVI values and the acquisition

and redevelopment costs lack correlation based on the same data set. We note that,

although there does not exist any data for a quantitative analysis, the PVI measure

is likely to be negatively correlated with the state of the economy and the housing

market. If the economy is good, depreciation of property values due to presence of

a foreclosed property in a neighborhood will typically be limited. Thus, the impact
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of the acquisition and redevelopment of a foreclosed property in a neighborhood in

a good economic state is not likely to be as high either. While such dynamic effects

due to market factors may not be as significant, they can again be captured through

scenario probabilities used within our stochastic programming framework.

As the final stochastic parameter, we let θilψ refer to the total required budget to

acquire all properties of category l available for acquisition in neighborhood i under

scenario ψ. The stochasticity in this parameter is due to the inherent uncertainty in

the housing market and the overall economy. Note that the definition of θilψ implicitly

represents the number of foreclosed properties of category l available for acquisition

in neighborhood i, as the cost of each property in a given category is assumed to have

the same probability distribution. Hence, a high realization of this parameter would

correspond to a high rate of foreclosures occurring for the corresponding category

of properties in a given neighborhood. The stochastic structure in this parameter

definition is also based on data analysis involving the transitions of properties in dif-

ferent pre-foreclosure stages to foreclosed status over a given period. These transition

probabilities, derived from historical property data, are described in detail in Johnson

et al. (2013). Given the current pre-foreclosure stage information for the properties

and using the transition probability structures, a probability distribution defining the

number of properties in a neighborhood that will be in foreclosed status in the next

period can be derived. Such a probability distribution for a sample category and

neighborhood is included in Appendix A.

We note here that there exists a correlation between the stochastic parameters cilψ

and θilψ, which correspond to the acquisition and redevelopment costs and the total

required budget to acquire all properties of category l in neighborhood i. When the

housing market or the economy worsens, property values are expected to decrease,

which should normally imply that the total required budget to acquire all foreclosed

properties would also decrease. At the same time, however, there is a negative corre-
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lation between number of foreclosures and property prices as shown through an em-

pirical analysis by McDonald and Stokes (2013). Thus, the reduced property prices

due to a worsening economy would also imply an increase in the number of foreclosed

properties. This could result in an increase in the total required budget to acquire

all properties. Given this interplay between the costs and the number of foreclosures,

the correlation between cilψ and θilψ can be either negative or positive. We capture

such correlation in our modeling framework by considering scenarios that reflect both

types of correlation, and assigning appropriate probabilities to each scenario based on

the likelihood of each type of correlation. The positive correlation case corresponds

to the situations where the property prices are high and at the same time there is

a high number of foreclosures, or vice versa, i.e. low costs and low number of fore-

closures. Based on an analysis by Chen (2009), we assume that the total likelihood

of these cases is 0.2. Hence, the negative correlation cases of low cost-high required

budget and high cost-low required budget outcomes have a total probability of 0.8.

The numerical analyses described in Section 3.4 have been implemented under these

assumptions on the correlation between the two parameters.

3.1.1.2 Deterministic Parameters

In addition to the stochastic parameters described above, several deterministic

inputs representing neighborhood and category properties are used as part of the

modeling framework. One such parameter is φil, which corresponds to the expected

financial return from the sale of an acquired category l property in neighborhood i.

In other words, this is the expected revenue in excess of costs associated with the

eventual sale of a foreclosed property that has been acquired and redeveloped to a

defined community standard. We assume for modeling and tractability purposes that

the financial returns φil from an acquired property are deterministic. This is mostly

a reasonable assumption as financial returns from acquired properties are typically
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better estimated than social returns, especially considering the 1-2 year timeline used

in the problem definition. In addition, these profit amounts are typically constant

for each category of properties. More specifically, the profit amount is determined

by adding a specific dollar amount on the total acquisition and redevelopment cost

of a property before its sale, as opposed to a percentage. The specific planned profit

amounts are determined by CDC management. Hence, financial returns in general

are independent of the costs incurred for a property, and they only vary over differ-

ent neighborhoods or categories of properties. To demonstrate the mostly constant

structure of the financial returns, in Appendix A we provide a plot of the financial

returns realized through a set of historical acquisitions by the CDC from which we

obtained historical acquisition data. In addition, given that a CDC typically uses a

fixed financial return objective, and does not use different markup rates under differ-

ent economic and market conditions, it can be assumed that such dynamics do not

play a significant role in this model parameter.

Another important measure assumed to be deterministic in the model is the col-

lective efficacy measure for a given neighborhood i, which is denoted as ei. The

collective efficacy ei is defined by Sampson et al. (1997) as the social cohesion among

neighbors combined with their willingness to intervene on behalf of the common good.

This measure is a hard-to-quantify social value and is typically based on expert opin-

ions. Thus, we include it in the model as a strategic value measure through which we

attempt to capture the benefits from a property’s location that relate to the CDC’s

mission and objectives for property redevelopment. Morenoff and Smapson (2001)

state that violent activities involving crime is directly related to the collective effi-

cacy of a neighborhood. More specifically, the authors note that criminal activities

can be ecologically concentrated because of the absence of guardianship defined by

the collective efficacy level of a neighborhood. The authors show a negative corre-

lation between crime rate and collective efficacy where collective efficacy is expected
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to be higher for the neighborhoods having lower crime rates. Based on this analysis,

we quantify the collective efficacy of a neighborhood using neighborhood-level crime

data. Given that crime statistics for a neighborhood are fixed and known, we natu-

rally assume this measure to be a deterministic parameter. We further standardized

crime rate information in each neighborhood to vary between 0 and 1 by dividing

each crime rate value by the maximum over all neighborhoods. Note that it is im-

plicitly assumed that ei > 0, as no neighborhood is likely to have a crime rate equal

to zero. While there exists some correlation between the state of the economy and

this model parameter, it is possible to assume that the impacts are likely going to

be similar in proximate neighborhoods, resulting in minor fluctuations in the relative

values for different neighborhoods. This is especially the case because the decision

epochs do not cover an extensive length of time, and any impacts on crime rates due

to economic dynamics or investment decisions are likely to take a longer time.

In order to model the fact that not all acquired properties might be redeveloped

and sold within the planning horizon, we introduce the parameter ril denoting the

probability that a category l property in neighborhood i will be sold within a given

time frame. While it is assumed that all acquired properties will be redeveloped and

sold over time, it may be that the CDC will consider a shorter planning horizon

for some return related parameters, during which not all properties might be sold.

Such dynamics play a more significant role in the more complex models we study

later in the study. This probability is estimated based on historical sales data, and

for FHAP-S it will be used to reflect the projected impact of acquisitions on home

ownership in a neighborhood, as redeveloped properties are typically sold to owner

occupants only. Given that the period length used to determine this probability, and

thus the probability ril, can vary based on the return type, we append the notation

for ril with a superscript corresponding to the return type. To this end, we let roil

denote the probability used for owner occupancy modeling purposes, and also define
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oi and ni as the current number of owner occupied and total number of properties in

a given neighborhood i, respectively. Similarly, we define rφil as the probability of sales

used for financial return calculations. The values for roil and r
φ
il are obtained through

past property sales ratios, and are fixed and known by definition. These values can

vary based on the state of the economy and the housing market, but this is likely to

take a longer amount of time than the planning horizons considered in the models.

Finally, dij is used to denote the distance between two neighborhoods i and j,

which will be utilized as part of an objective involving the allocation of the budget

in a way that would take advantage of synergistic effects of investing in proximate

neighborhoods. We note here that the distance between neighborhoods is an ambigu-

ous notion, which in this study is approximated as the straight-line distance between

centroids of two neighborhoods. Thus, by definition it is a deterministic parameter.

In addition, by synergistic effects we mean a social value arising between certain num-

ber of properties that produce a value greater than the sum of their individual PVI

values, which we discuss further as part of objective descriptions in Section 3.1.2.

3.1.2 Model Definition

In addition to the budget allocation decisions xi and the tactical acquisition de-

cisions hψil which were defined above, a set of additional decision variables are also

utilized in the model formulation. To this end, we first define zψi as the unused budget

allocated to neighborhood i in scenario ψ. This variable will be used as part of an

objective to maximize expected budget utilization, noting that having any unused

funds would imply that the resources are not being utilized.

All other variables used in the formulation are auxiliary variables that help define

different objectives and constraints. Of these, yij relates the investments in neighbor-

hoods i and j with respect to the distance between the neighborhoods. Rψ and Sψ,

on the other hand, define the minimum expected home ownership rate and minimum

32



www.manaraa.com

Decide resource

allocation to

neighborhoods
Realizations of cost

and availabilities for 

each category in each 

neighborhood

Decide properties

to acquire Realizations of social

returns for each

category in each neighborhood

Scenario 1

Scenario 2

Scenario 

Figure 3.2. Scenario tree illustrating the decisions and stochastic parameter real-
izations in FHAP-S.

allocation rate over all neighborhoods for scenario ψ. The allocation rate in the defi-

nition of Sψ refers to the ratio of the budget allocated to a given neighborhood over

the observed value of available housing units for acquisition in that neighborhood.

Using the notation described above, we model FHAP-S as a two stage stochastic

mixed-integer programming problem. In this recourse model, the first-stage decisions

involve xi, i.e. the allocation of budgets to each neighborhood, and the auxiliary

variables yij . Once the components of the random vector Ψ corresponding to costs

and availability of properties are realized, the tactical acquisition decisions are made

as defined by the second stage variables hψil and zψi . While it is assumed that the

returns µilψ from the acquired properties will be realized further into the future, no

decisions are assumed to be made after the return realizations. Hence, we incorporate

the stochasticity in the returns by considering the expected returns for each scenario.

The corresponding scenario tree for FHAP-S is illustrated in Figure 3.2, where the

dark rectangles represent the decision nodes. This assumption is relaxed in the more

comprehensive models described in the later sections. We first summarize the notation

used in FHAP-S below, and then describe the objectives and constraints in detail.
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3.1.2.1 Notation Used in FHAP-S

Variables Used in FHAP-S

hψil : Integer variable denoting the umber of properties of category l acquired

from neighborhood i under scenario ψ

Rψ: Auxiliary variable defining the minimum home ownership rate among

all neighborhoods for scenario ψ

Sψ: Auxiliary variable defining the minimum allocation rate among all

neighborhoods for scenario ψ

xi : Amount of budget allocated to each neighborhood i

yij : Auxiliary variable relating the investments in neighborhoods i and j

with respect to the distance between the neighborhoods

zψi : Unused allocated budget for neighborhood i in scenario ψ

Parameters Used in FHAP-S

B : Available budget over the planning horizon

cilψ : Acquisition cost for a category i property in neighborhood l

under scenario ψ

dij : Distance between neighborhoods i and j

ei : Collective efficacy measure for a given neighborhood i

ni : Current number of properties for a given neighborhood i

oi : Current number of owner occupied properties for a given neighborhood i

pψ : Probability of scenario ψ

roil : Probability that a category l property in neighborhood i will be sold

within the time frame used for measuring owner occupancy

µilψ : Social return from the acquisition of a category l property in

neighborhood i under scenario ψ
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λk: Weight importance for objective k

θilψ : Total required budget to acquire all properties of category l

available for acquisition in neighborhood i under scenario ψ

φil : The financial return from the acquisition of a category l property

in neighborhood i

uk : An upper bound value for objective k.

uk : An auxiliary value for objective k.

3.1.2.2 Model Formulation

Based on this framework, the multi-objective two-stage stochastic mixed-integer

programming formulation for FHAP-S is as follows:

F(x,y,Ψ) = max λ1

|I|∑

i=1

xi
ei

+ λ2

|I|∑

i=1

|I|∑

j=1

yij + EΨ[Q(x,y,Ψ)] (3.2)

s.t.

|I|∑

i=1

xi ≤ B (3.3)

yij =
xi
dij

∀i, j (3.4)

xi, yij ≥ 0 ∀i, j, l, ψ (3.5)

where F(x,y,Ψ) is a weighted sum of all objectives and Q(x,y,Ψ) is the optimal

objective value of the second stage decision problem for any given realization ψ of the

random vector Ψ. Q(x,y, ψ) is defined as:

Q(x,y,Ψ) = maxλ3S
ψ + λ4

|I|∑

i=1

|L|∑

l=1

φilh
ψ
il + λ5

|I|∑

i=1

|L|∑

l=1

µilψh
ψ
il + λ6R

ψ

+ λ7(1−

∑|I|
i=1 z

ψ
i∑|I|

i=1

∑|L|
l=1 θ

il
ψ

) (3.6)

xi∑|L|
l=1 θ

il
ψ

≥ Sψ ∀i, ψ (3.7)
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oi +
∑|L|

l=1 r
o
ilh

ψ
il

ni
≥ Rψ ∀i, ψ (3.8)

xi −

|L|∑

l=1

cilψh
ψ
il = zψi ∀i, ψ (3.9)

cilψh
ψ
il ≤ θilψ ∀i, l, ψ (3.10)

xi, yij, z
ψ
i , S

ψ, Rψ ≥ 0 ∀i, j, l, ψ (3.11)

hψil ∈ Z+ ∀i, l, ψ (3.12)

where λk is the weighting factor coefficient for objective k = 1, . . . , 7, where
∑7

k=1 λk =

1 and λk ≥ 0. Although there are many algorithms in the literature to deter-

mine weight values, no fundamental guidelines have been presented for selecting

weights. Eckenrode (1965), Hobbs (1980), Voogd (1983) can be given as examples to

the proposed approaches in weight determination. In our application, we determine

weights accordingly based on discussions with CDC staff. Since they are indifferent

between objectives and do not have any priorities, we use equal λk values for the

objectives in our implementations.

Note that our objective function is a weighted combination of several objectives.

To derive this function, we first normalize each objective value function separately by

performing the following steps:

1. Set the corresponding weighting factor for the given objective k to 1 while

setting other weighting factors to 0.

2. Solve the model and let the value of the overall objective function be uk, where

uk represents an upper bound for objective k.

3. Use the current values of all weighting factors (e.g. in our implementations all

λk’s are assumed to be equal), and solve the model. Let the corresponding value

for objective k be uk.
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4. Normalize each objective value as uk
uk
.

Through these steps we ensure that each objective value is between 0 and 1. In

order to combine separate objectives, we multiply each objective by its weight and

sum them up. Since
∑7

k=1 λk = 1 and λk ≥ 0, the overall objective function will

be between 0 and 1 as well. Note that our solution methods for FHAP-S, as well

as its variants and extensions, are applied to a single-objective version of this model

using a weighted representation of the objectives with weights where the weights are

determined by the CDC. On the other hand, other multi-objective frameworks can

be considered for the optimization as well. We further note that, we obtained the

value of our weighted objective function by using mathematical programming tools

instead of generating a seven dimensional noninferior set of alternatives. However,

in Section 3.4.4, we perform Pareto analysis for grouped sets of objectives where

we grouped our objectives into two groups and investigate the noninferior set of

alternatives between new two objectives.

3.1.2.3 Objectives and Constraints

As noted above, our optimization model includes seven types of objectives, which

reflect different goals involving maximization of overall socio-economic utility and

equity through the decisions made. These objectives were developed based on consul-

tations with CDCs which involved formal value focused thinking sessions with CDC

staff. Modeling of the objectives requires introduction of various constraints, which

we also describe below.

The first and second objectives shown in (3.2) constitute the first stage objective

function, which implies that they are only a function of the first stage variables,

i.e. the resource allocation decisions. Objective 1 is an equity related objective

defined according to neighborhood-level collective efficacy measures introduced in

Section 3.1.1. This objective, similar to those of Leclerc and McLay (2012), maximizes
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total collective efficacy of a budget allocation strategy over all neighborhoods by

allocating higher budgets to neighborhoods with relatively lower efficacy values. This

is ensured by the ratio xi
ei

in the objective definition. Given the efficacy measures ei

for each neighborhood, the ratio will be maximized if larger xi values are assigned to

neighborhoods with lower ei levels.

Objective 2 is related to the economies of scale and aims to maximize efficiencies

associated with proximity of acquired units. The objective is modeled through the

variable yij and the constraint (3.4) and standardized by following steps described

in Section 3.1.2.2. The structure of the objective involves the minimization of a

function of the total distance between neighborhoods to which resources are allo-

cated. Notice that we use the distance between neighborhoods, as opposed to actual

properties, because property availability is an uncertain parameter and thus specific

location information is not known within the modeling framework. So the intended

objective is assumed to be achieved by considering that higher allocations to a neigh-

borhood would result in a higher number of properties to be acquired with closer

proximity. This is done by the maximization of the yij values, for which larger xi

and xj values need to be assigned for neighborhoods i and j that are geographically

closer, i.e. where dij is small. The utility of having more acquisitions in proximate

neighborhoods is mainly due to ease of managing redevelopment activities in nearby

regions. If the acquired properties are closer to each other, then it also becomes more

convenient to locate municipal services. In the absence of an explicit function repre-

senting such economies of scale, the model tries to allocate the budget proportionally

to the distances between neighborhoods through this function, where the distances

between neighborhoods are based on the centroids of the neighborhoods. Related to

this structure, Galster et al. (2006) show that concentrated long-term investments in

small areas produce beneficial results when compared with areas without such focused

investments.
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The remaining five objectives correspond to the second stage objective function as

shown in (3.6), as their values depend on the realization of the uncertain parameters.

Objective 3 another equity related objective and involves the maximization of the

minimum allocation rate, i.e. the ratio of the budget allocated to a given neighbor-

hood and realized value of available housing units for acquisition to provide equitable

service to different neighborhoods. Hence, this objective aids to allocate resources

equally to neighborhoods. This is modeled through constraint (3.7), the structure

of which implies that Sψ will be maximized if the ratio on the left hand side is as

high and close as possible for all neighborhoods. This objective is a ratio and varies

between 0 and 1 but similar to the other objectives it is also standardized by using

steps in Section 3.1.2.2.

Objective 4 considers the financial returns from the resource allocation strategy

by maximizing the total expected profit based on the financial return structures for

each category of housing. This is a relevant objective for CDC operations, despite

the fact that CDCs are nonprofit organizations. This is because any financial profits

made in the current planning period will enable more acquisitions in the future. The

profit amounts are defined based on the product of expected per unit profit and the

number of properties acquired as shown in the formulation. Although the unit of this

objective is in dollars, after standardization, it varies between 0 and 1.

Objective 5 ensures the social utility maximization of a foreclosed housing acqui-

sition strategy, where social utility is based on the social return measure µilψ defined

for each category of housing in each neighborhood. As noted previously, we adapt a

social return measure based on the impact of the acquisitions on the values of nearby

properties (PVI). Similar to the financial returns, PVI based social returns in FHAP-

S are defined by the product of realized per unit PVI and the number of properties

acquired in each category in a neighborhood. The objective value is standardized and

changes between 0 and 1.
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Objective 6 represents an equity related goal based on owner occupation rates in

neighborhoods. Maximization of owner occupied housing units in each neighborhood

is one of the missions of CDCs (Galster et al., 2005), and this objective tries to achieve

it in an equitable way by maximizing the minimum owner occupation rate among

neighborhoods. The objective structure is modeled through constraint (3.8), where

expected increase in the number of owner occupied properties in a neighborhood is

defined in the numerator on the left hand side of the constraint. The increase is based

on the probability roil that a property in a specific category will be sold to an owner

occupant within a predefined period, where the length of this period is dependent

on a CDC’s overall goals with regard to owner occupancy. Maximizing Rψ would

imply a more evenly distributed owner occupancy rates among neighborhoods after

the acquisitions. This objective also varies between 0 and 1 after standardization by

following steps in Section 3.1.2.2.

Finally, Objective 7 ensures that the available budget is utilized in the most

efficient manner across different scenarios. To this end, constraint (3.9) defines the

variable zψi , which corresponds to any unused portion of the allocated budget to a

neighborhood. Hence, the expression
∑|I|
i=1

zψi
∑|I|
i=1

∑|L|
l=1

θil
ψ

in (3.6) is the ratio of unused budget

to the total value of available properties for a given scenario. This ratio is used to

ensure that the consideration of the unused budget amounts for different scenarios is

consistent, as the availabilities differ for each scenario.

In addition to the constraints described above, the optimization model involves

constraints (3.3), (3.10), (3.11) and (3.12). In constraint (3.3), we ensure that amount

of allocated resources are less than the total budget available, while constraint (3.10)

ensures that total amount of acquired properties does not exceed the total amount

of available properties. We further define nonnegativity and integrality through con-

straints (3.11) and (3.12), respectively.
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This model reflects fundamental policy-analytic concerns with tradeoffs between

efficiency, effectiveness and equity (Bardach, 2005), as well as an understanding of

policy and practice in foreclosure mitigation activity derived from observations of

specific CDCs. In addition, observing that the expectation in (3.2) can be repre-

sented through the scenario probabilities pψ, the overall model can be expressed in

the following compact form:

max
{
λ1

|I|∑

i=1

xi
ei

+ λ2

|I|∑

i=1

|I|∑

j=1

yij +
∑

ψ∈Ψ

pψ
[
λ3S

ψ + λ4

|I|∑

i=1

|L|∑

l=1

φilh
ψ
il

+ λ5

|I|∑

i=1

|L|∑

l=1

µilψh
ψ
il + λ6R

ψ + λ7(1−

∑|I|
i=1 z

ψ
i∑|I|

i=1

∑|L|
l=1 θ

il
ψ

)
]

s.t. (3.3), (3.4),

(3.7)− (3.12)
}

(3.13)

Note that by setting λk′ = 1 and λk = 0 for all k 6= k′, we may analyze the corner

points of the Pareto frontier associated with a solution to FHAP-S. In addition to such

an implementation, we also generate estimates of the Pareto frontier associated with

aggregations of various FHAP-S objectives through an application of the constraint

method (Collette and Siarry, 2003) later in the study.

3.2 Model II: FHAP with Gradual Uncertainty Resolution

(FHAP-G)

The second model we consider for FHAP has a more complex representation of

the resource allocation decision process. While this representation is more realistic

as it considers potential reallocation of budget depending on gradual realization of

information on the economy and its impacts on neighborhoods, the resulting model

is a more complex multi-stage stochastic mixed-integer programming problem.

The multi-stage decision process that involves gradual resolution of uncertainty is

depicted in Figure 3.4. We assume a longer strategic planning timeline consisting
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of two budgeting periods, e.g. two years, with a pooled budget to be allocated

over the two periods. Such a strategic decision timeline has been observed to be

used by CDCs (Frisch and Servon, 2006). Given the longer planning horizon of

two years, a CDC can perform better planning by taking into account the learning

effects that will take place over time. More specifically, the state of the economy and

market conditions two years into the future will be better estimated in the next year

based on realized conditions in the first year. Hence, a model that captures such

dynamics is likely to be more valuable when deciding on optimal budget allocations.

At the beginning of the planning horizon, i.e. in the first decision epoch, initial

resource allocation decisions for each neighborhood are made separately for each

of the next two years. Foreclosed properties then become available for potential

acquisition along with the associated costs, and acquisition decisions are made in the

second decision epoch based on the social return distribution information available at

that time. It is assumed that additional new information on returns will be revealed

after the second decision epoch based on the state of the economy, which will be

followed by a potential reallocation of second year resource allocations, as well as

new allocations of any unused budgets and realized returns from any sales in the

first year. These represent the decisions in the third decision epoch, while in the

fourth epoch acquisitions for the second budgeting period will be performed after new

availability and cost information becomes known. We note here that the realizations

of the cost parameters in the second period are dependent on the social return, i.e.

PVI realizations in the first period. More specifically, a high PVI value in the first

period would imply a higher appreciation of house prices which is then reflected in

the acquisition costs of foreclosed properties in the same area in the second period.

Hence, scenarios for the stochastic programming formulation are defined based on

this dependent structure.
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Figure 3.3. Demonstration of gradual resolution of uncertainty for the random
availability parameter θilΨ.

We further describe gradual uncertainty realization through Figure 3.3, which

shows an example where the availability information θilΨ is learned over time. In this

example the availability is assumed to be either at low or high levels, indicated by L

and H, respectively. At Epoch I, the probability of a low realization is 0.6, while the

probability is 0.4 for a high availability level. Information becomes available over time,

and preliminary availability information is known at Epoch II. If this information is

θilΨ = L, then the probability distribution for low and high availabilities in the second

period, which is to be realized at Epoch IV, is updated to be 0.8 and 0.2, respectively.

On the other hand, if θilΨ = H at Epoch II, then the corresponding probabilities are

0.3 and 0.7 for low and high availabilities as shown in the figure. This representation

suggests four combinations of realizations for the random availability parameter θilΨ,

namely LL, LH, HL, HH, which form part of the scenario definitions involving all

uncertain parameters.

Based on the description above, we expand the notation used in Section 3.1 by

referring to the first stage allocation variables as xiρ where ρ ∈ {1, 2} refers to the

planning period. Note that xi2 represents the tentative allocations for period two

made at the first decision epoch. This tentative allocation can be changed in the third

decision epoch, as represented through variables x+ψi and x−ψi which correspond to
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Learn realized social
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Period 1 Period 2

Figure 3.4. The decision process for the strategic foreclosed housing acquisition
problem with gradual resolution of uncertainty in social returns.

the positive and negative reallocation decisions for scenario ψ ∈ Ψ. The definitions

of all other decision variables are also extended through the subscript ρ ∈ {1, 2}.

The realized values of the stochastic parameters after the reallocation period are

denoted as follows: µ̃ilψ, θ̃
il
ψ, c̃

il
ψ. Finally, a penalty parameter νi is introduced for

the costs associated with budget reallocation to/from a given neighborhood i. This

reallocation cost corresponds to variable overhead and other expenses due to changes

in the initial allocated budgets to neighborhoods. We include the minimization of

the expected value of this cost as a new objective and associate it with the weighting

parameter λ8. The notation used in FHAP-G and the formulation of the model are

as follows:

Variables Used in FHAP-G

hρψil : Number of properties of category l acquired from neighborhood i at

period ρ under scenario ψ

R2ψ : Auxiliary variable defining the minimum home ownership rate among

all neighborhoods at second period for scenario ψ

S2ψ : Auxiliary variable defining the minimum allocation rate among all

neighborhoods at second period for scenario ψ

xρψi : Amount of allocated budget to each neighborhood i at period ρ
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in scenario ψ

x+ψi : Amount of positive reallocation budget of neighborhood i in scenario ψ

x−ψi : Amount of negative reallocation budget of neighborhood i in scenario ψ

yρψij : Auxiliary variable relating the investments in neighborhoods i and j at

period ρ in scenario ψ with respect to the distance between

the neighborhoods

zρψi : Unused allocated budget for neighborhood i at period ρ in scenario ψ

Parameters Used in FHAP-G

c̃ilψ : Acquisition cost for a category l property in neighborhood i at

second period under scenario ψ

rφil : Probability that a category l property in neighborhood i will be sold

within the second period under time frame used for measuring

financial returns

µ̃ilψ : Social return from the acquisition of a category l property in

neighborhood i at second period under scenario ψ

θ̃ilψ : Total required budget to acquire all properties of category l available

for acquisition in neighborhood i at second period under scenario ψ

αη : Parameter defining the vertex point η in the piecewise linear

approximations

Θ : Upper bound on the amount of allocation to any neighborhood

τ1, τ2 : Threshold values used in the definition of the investment

dependent return function

Υψψ′

ρ :





1, if ψ and ψ′ have the same history at a given decision epoch

in period ρ

0, otherwise
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This objective function for the resulting multi-stage stochastic mixed-integer pro-

gramming formulation for FHAP-G can be expressed in nested expectation form as

follows, where the notation Ψt denotes the vector of random parameters that realize

after each epoch t as described in Figure 3.4. G(x,y,S,h,R, z,Ψ) is defined as a

scalar value which is the weighted sum of all objectives:

G(x,y,S,h,R, z,Ψ) = max λ1

|I|∑

i=1

xi1
ei

+ λ2

|I|∑

i=1

|I|∑

j=1

yij1 (3.14)

+ EΨ2

[
λ3S

Ψ2

1 + λ4

|I|∑

i=1

|L|∑

l=1

φilh
Ψ2

il1 + λ5

|I|∑

i=1

|L|∑

l=1

µilΨ2
hΨ2

il1 + λ6R
Ψ2

1

+ λ7(1−

∑|I|
i=1 z

Ψ2

i1∑|I|
i=1

∑|L|
l=1 θ

il
Ψ2

) (3.15)

+ EΨ3|Ψ2

[
λ1

|I|∑

i=1

xi2 + x+Ψ3

i − x−Ψ3

i

ei
+ λ2

|I|∑

i=1

|I|∑

j=1

yΨ3

ij2 − λ8

|I|∑

i=1

νi(x
+Ψ3

i + x−Ψ3

i )

(3.16)

+ EΨ4|Ψ3,Ψ2

[
λ3S

Ψ4

2 + λ4

|I|∑

i=1

|L|∑

l=1

φilh
Ψ4

il2 + λ5

|I|∑

i=1

|L|∑

l=1

µ̃ilΨ4
hΨ4

il2 + λ6R
Ψ4

2

+ λ7[(1−

∑|I|
i=1 z

Ψ4

i2∑|I|
i=1

∑|L|
l=1 θ̃

il
Ψ4

)]
]]]

(3.17)

The components of the objective shown in (3.14) and (3.15) are respectively the objec-

tive functions for the first and second stages, and are defined similar to the FHAP-S

formulation described in Section 3.1.2. The nested expectation in (3.16) corresponds

to the third stage objective function, which consists of a similar setup as (3.14) plus

Objective 8. The third stage objective function is calculated assuming the realization

of preliminary costs, availabilities, and social returns in the first and second stages.

The structure of Objective 1 in (3.16) involves the reallocation decisions as part of

the numerator defining the final resource allocation amount to each neighborhood for

the second period. The fourth stage objective is shown through the expectation in
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(3.17) which is defined over the uncertainty in social returns given the information

on realized costs and availabilities in the third stage.

Defining a scenario ψ with probability pψ for each possible combination of realiza-

tions of the random parameters over the entire planning horizon, where conditional

realizations are also taken into account, the overall formulation for FHAP-G can be

stated by combining the components of the objective function that are multiplied by

the same weighting factor λk, k = 1, . . . , 8:

G(x,y,S,h,R, z,Ψ) = maxλ1

|I|∑

i=1

xi1
ei

+ λ2

|I|∑

i=1

|I|∑

j=1

yij1

+
∑

ψ∈Ψ

pψ

[
λ1

|I|∑

i=1

xi2 + x+ψi − x−ψi
ei

+ λ2

|I|∑

i=1

|I|∑

j=1

yψij2 + λ3(S
ψ
1 + Sψ2 )

+ λ4

|I|∑

i=1

|L|∑

l=1

φil(h
ψ
il1 + hψil2) + λ5

|I|∑

i=1

|L|∑

l=1

(µilψh
ψ
il1 + µ̃ilψh

ψ
il2) + λ6(R

ψ
1 +Rψ

2 )

+ λ7
[
(1−

∑|I|
i=1 z

ψ
i1∑|I|

i=1

∑|L|
l=1 θ

il
ψ

) + (1−

∑|I|
i=1 z

ψ
i2∑|I|

i=1

∑|L|
l=1 θ̃

il
ψ

)
]
− λ8

|I|∑

i=1

νi(x
+ψ
i + x−ψi )

]
(3.18)

s.t (3.4), (3.7)− (3.12)

|I|∑

i=1

2∑

ρ=1

xiρ ≤ B (3.19)

yψij2 =
xi2 + x+ψi − x−ψi

dij
∀i, j, ψ (3.20)

xi2 + x+ψi − x−ψi∑|L|
l=1 θ̃

il
ψ

≥ Sψ2 ∀i, ψ (3.21)

oi +
∑|L|

l=1 r
o
ilh

ψ
il1 −

∑|L|
l=1 θ̃

il
ψ +

∑|L|
l=1 r

o
ilh

ψ
il2

ni
≥ Rψ

2 ∀i, ψ (3.22)

xi2 + x+ψi − x−ψi −

|L|∑

l=1

c̃ilψh
ψ
il2 = zψi2 ∀i, ψ (3.23)

c̃ilψh
ψ
il2 ≤ θ̃ilψ ∀i, l, ψ (3.24)
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|I|∑

i=1

x+ψi −

|I|∑

i=1

x−ψi =

|I|∑

i=1

|L|∑

l=1

rφilφilh
ψ
il1 +

|I|∑

i=1

zψi1 ∀ψ (3.25)

χψρ = χψ
′

ρ ∀ρ, ψ, ψ′ : Υρ
ψψ′ = 1 (3.26)

xiρ, x
+ψ
i , x−ψi , yψijρ, z

ψ
iρ, S

ψ
ρ , R

ψ
ρ ≥ 0 ∀i, j, l, ψ, ρ (3.27)

hψilρ ∈ Z+ ∀i, l, ψ, ρ (3.28)

We note that, similar to the FHAP-S model,
∑8

k=1 λk = 1 and λk ≥ 0. In our

calculations, we use equal weighting factors to evaluate the objective function and

the same steps described in Section 3.1.2.2 are used to normalize the objective func-

tion. The constraints in the above formulation have a similar structure as FHAP-S

except that they are defined both for the first and second planning periods, where

the first period involves decision epochs I and II, and the second period involves deci-

sion epochs III and IV. The constraints also reflect the relationships between the two

planning periods. More specifically, constraint (3.19) is the revised budget constraint

which ensures that the sum of resource allocations to neighborhoods do not exceed

the initially available budget B. Constraint (3.20) defines the variables y in relation

to Objective 2 in the second period, where the numerator xi2 + x+ψi − x−ψi represents

the final second period allocation to neighborhood i at decision epoch III. Through

the same allocation representation, constraint (3.21) is used to define Objective 3 for

the second period, which involves maximization of the minimum allocation rate over

neighborhoods. Note that constraint (3.21) involves an approximation where previous

allocation decisions are only implicitly considered and not endogenously modeled in

the denominator of the left hand side of the constraint. This is because second stage

property availability should also take into account any remaining properties from the

first period, i.e. the denominator in (3.21) should be
∑|L|

l=1(θ
il
ψ + θ̃ilψ)− xi1. However,

this gives rise to a nonlinear and nonconvex structure, which we approximate by as-

suming that the second period availability will be exogenously determined, taking into
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account any potential remaining properties. In Section 3.3 we remove this assump-

tion and reformulate the original model through a piecewise linear approximation

approach.

The objective related to home ownership for the second period is modeled by

constraint (3.22), which involves an endogenous structure as it captures the impact

of previous period sales and new foreclosures in defining the owner occupancy rate.

This is done by updating the number of owner occupied units in the numerator

through the addition of number of sold properties as defined by the probability roil,

and the subtraction of the number of new foreclosures. Similar to its first period

counterpart, constraint (3.23) represents the amount of unused budget in period two.

More specifically, the amount of unused budget in neighborhood i is the difference

between the final second period allocation of xi2 + x+ψi − x−ψi and the total number

of acquisitions
∑|L|

l=1 c̃
il
ψh

ψ
il2. The inequality (3.24) is the availability constraint for the

second period, modeling the fact that the number of acquisitions is limited by the

available number of foreclosed properties. As a new constraint, (3.25) ensures that

reallocations in the second period are feasible given the tentative allocations. The

right hand side of this constraint represents the newly available funds for the second

period, which corresponds to the sum of any unused budget in the first period and

the financial returns from any property sales that might have occurred before the

budget reallocation time, while the variables on the left hand side correspond to the

reallocation decisions.

Constraints (3.26) are the nonanticipativity constraints for this multi-stage prob-

lem, which impose the condition that scenarios that share the same history at a

decision epoch also make the same decisions during that history. Note that nonan-

ticipativity is implied for the first decision epoch as the same variable definitions are

used for all scenarios. Moreover, the fourth stage decisions are independent for each

scenario, so no nonanticipativity requirements exist at that stage. Hence, explicit
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nonanticipativity representation is required for the second and third decision epochs

only. Since these two epochs correspond to the first and second periods respectively,

we utilize the period index in defining these constraints. More specifically, we intro-

duce the indicator parameter Υψψ′

ρ , where Υψψ′

ρ = 1 if ψ and ψ′ have the same history

at the second and third decision epochs, which respectively correspond to ρ ∈ {1, 2}.

Defining the sets χρ as χ1 = {hψil1, z
ψ
i1, S

ψ
1 , R

ψ
1 } and χ2 = {x+ψi , x−ψi , yψij2}, we are

able to represent the nonanticipativity in the formulation through constraints (3.26).

We also define nonnegativity and integrality conditions thorough constraints (3.27)

and (3.28).

3.3 Model Variations and Extensions

In this section we present two extensions to the core FHAP models presented.

These variations of the model are used to capture some additional complexities that

may exist in different practical settings.

3.3.1 Investment Dependent Social Return Functions

In this section we consider a different and more complex return structure for the

two FHAP models by including synergistic effects that can be realized based on the

number of acquisitions or the amount of investment in a given neighborhood. Such

synergistic effects, specifically in social returns, have been discussed in the literature

and also have been typically observed in practice (Bhide, 1993; Damodaran, 2005).

Moreover, Harding et al. (2009) show that the contagion effect is a nonincreasing

convex function of the number of foreclosures. This result implies that social returns

can be considered as nondecreasing concave functions of the acquired foreclosed units.

Hence, we expand our models to include this aspect by modeling the effect of acqui-

sition decisions on social return characterizations. However, due to the introduction
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of new constraints and binary variables, the complexity of the resulting problem is

increased.

To model this investment dependent return structure, we assume that the social

returns µilψ in the first period and µ̃ilψ in the second period are defined as piecewise step

functions of the ratio of investment for each category and neighborhood over available

acquisitions, which we refer to as the ‘acquisition ratio’, similar to the function type

shown in Figure 3.5. The corresponding return structure has the following pattern:

as the acquisition ratio in a property category and neighborhood increases, the return

also increases up to a threshold level τ1 and then remains constant in the range (τ1, τ2).

If the acquisition ratio exceeds τ2, then a synergistic joint return value µilψ is realized

for each scenario. We note here that while the structure of these return functions

has been justified through practical discussions in the literature, there is no empirical

evidence as to what the typical values for τ1 and τ2 should be for PVI based return

functions. These parameters need to be subjectively defined by CDC practitioners,

similar to what was done for our numerical implementations. On the other hand, we

have also performed a sensitivity analysis around these parameter values as described

in Section 3.4.3.

We also note that our modeling framework is quite general and can be adapted

to different input characterizations. While in Figure 3.5 we show a piecewise lin-

ear structure, it is possible to define the returns using nonlinear functions as long

as convexity of the optimization model is maintained and the model is solved as a

stochastic nonlinear integer programming problem. Hence, in our representation of

the investment dependent return functions we use generic notation and refer to the

piecewise components of the return functions as f ρψ(h
ψ
ilρ) and gρψ(h

ψ
ilρ), as indicated

in Figure 3.5 for ρ = 1. The uncertainty in the social returns is modeled through

the parameters of these functions. Based on the linearity assumption and for the

empirical analysis in the study, we consider a probabilistic structure for the slope of
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Figure 3.5. Investment dependent social return function modeling the synergistic
effects of property acquisitions in a given neighborhood.

the function f ρψ(h
ψ
ilρ). Hence, different return realizations would imply different slopes

for this function. This is demonstrated in Figure 3.5 for low, medium and high social

return realizations for first period social returns µilψ. This uncertainty representation

can be generalized by considering more uncertain parameters in the function defini-

tions, such as the parameters of gρψ(h
ψ
il) and the joint return value µilψ. Hence, these

functions are also denoted using the scenario subscript ψ. In addition, we define the

binary variables βψilρ, which equal 1 if the joint return is realized, i.e. if the acquisition

ratio exceeds τ2, and 0 otherwise. Also while µilψ and µ̃ilψ are defined as parameters in

FHAP-S and FHAP-G, they become decision variables when investment dependent

return is modeled. Note that second period returns are modeled through their expec-

tations, so the parameters of the functions f 2
ψ(h

ψ
il2) and g

2
ψ(h

ψ
il2) in the second period

are constant as they are based on these expectations.

Using this notation, it is possible to incorporate the investment dependent return

structure into the two models as follows. For a more general representation, we

show the modifications required for FHAP-G and describe how they would differ for
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FHAP-S. The first modification involves the changes in the social return objective

corresponding to the weighting parameter λ5. We first summarize the added notation

as follows:

Variables Added for FHAP-S and FHAP-G Extensions

ωψ1 : Approximated value of the square of Sψ2

ω2i : Approximated value of the square of xi1

ωψ3i : Approximated value of the square of the summation of Sψ2 and xi1

γSψη : SOS2 variable for approximation of the square of Sψ2 defined at

point η under scenario ψ

γXiη : SOS2 variable for approximation of the square of X1
i defined at

point η under scenario ψ

γSXψiη : SOS2 variable for approximation of the square of the summation of

Sψ2 and xi1 for neighborhood i defined at point η under scenario ψ

βψilρ :





1, if the total category l property acquisitions in neighborhood i

exceed the threshold for joint return realization under scenario ψ

in period ρ

0, otherwise

To capture the investment dependent return structure, this function needs to be

expressed in FHAP-G as:

G(x,y,S,h,R, z, µ̃,µ,β,Ψ) = max · · ·+ λ5

|I|∑

i=1

|L|∑

l=1

(µilψ + µilψβ
ψ
il1 + µ̃ilψ + µilψβ

ψ
il2)

+ . . . (3.29)

where the dots indicate that the remainder of the objective is exactly as shown in

(3.18). Moreover, the following additional constraints need to be defined for the

model, where the variables βψil1 and µ
il
ψ are included into the group χ1, while β

ψ
il2 and

µ̃ilψ are included into the group χ2:
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βψil1 −
hψil1c

il
ψ∑|L|

l=1 θ
il
ψ

≤ 1− τ2 βψil2 −
hψil2c̃

il
ψ∑|L|

l=1 θ̃
il
ψ

≤ 1− τ2 ∀i, l, ψ (3.30)

βψil1 −
hψil1c

il
ψ∑|L|

l=1 θ
il
ψ

≥ −τ2 βψil2 −
hψil2c̃

il
ψ∑|L|

l=1 θ̃
il
ψ

≥ −τ2 ∀i, l, ψ (3.31)

µilψ ≤ f 1
ψ(h

ψ
il1) µ̃ilψ ≤ f 2

ψ(h
ψ
il2) ∀i, l, ψ (3.32)

µilψ ≤ g1ψ(h
ψ
il1) µ̃ilψ ≤ g2ψ(h

ψ
il2) ∀i, l, ψ (3.33)

χψρ = χψ
′

ρ ∀ρ, ψ, ψ′ : Υρ
ψψ′ = 1 (3.34)

µilψ, µ̃
il
ψ ≥ 0 ∀i, l, ψ (3.35)

βψilρ ∈ {0, 1} ∀i, l, ψ, ρ (3.36)

Constraints (3.30)-(3.31) ensure the realization of the joint return for the two

periods if the acquisition ratio is greater than the threshold level τ2. The piece-

wise structure of the return is modeled through constraints (3.32)-(3.33) due to the

maximization objective involving the social returns. Constraint (3.34) represents the

nonanticipativity constraints for the newly introduced variables as discussed above.

Through constraints (3.35) and (3.36) we define nonnegativity and integrality condi-

tions for the new decision variables.

For adaptation of the above modifications into FHAP-S, the term µ̃ilψ + µilψβ
ψ
il2 is

removed from the objective function (3.29). In addition, constraints (3.30), (3.31),

(3.32), and (3.33) are added to the formulation as shown, except the subscript of the

acquisition variable is removed, to be denoted as hψil.

3.3.2 Reformulation of Allocation Rate Constraint

The second extension we introduce applies to FHAP-G only, and deals with the

reformulation of constraint (3.21) which corresponds to one of the equity objectives

in the model. Although this new extension adds to the complexity of the formulation,

it is a more accurate representation of the equity objective as described in Section

3.2.
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As noted previously, when remaining property information from the first plan-

ning period is included in the denominator on the left hand side of constraint (3.21),

i.e. if the denominator is
∑|L|

l=1(θ
il
ψ + θ̃ilψ) − xi1, the resulting constraint is nonlin-

ear and nonconvex. We deal with this issue by convexifying the model through a

piecewise linear approximation of the nonlinear terms as follows. The nonlinear con-

straint can be rewritten as xi2 + x+ψi − x−ψi ≥
∑|L|

l=1 S
ψ
2 (θ

il
ψ + θ̃ilψ) − Sψ2 xi1, where

the second component on the right hand side involves the product of two decision

variables. Through some algebraic manipulation, this bilinear term can be expressed

as Sψ2 xi1 = −
(Sψ

2
)2

2
− (xi1)2

2
+

(Sψ
2
+xi1)

2

2
to involve three terms with squared values of

decision variables. We utilize piecewise linear approximation methods on these three

terms using a set of parameters corresponding to the vertices of the piecewise linear

curves.

More specifically, we define new nonnegative variables γXiη , γSψη and γSXψiη for

each i, ψ, and η= 0, 1, ...N , where N is the number of vertices used to represent the

nonlinear functions. Note that N can vary for each of the functions approximated.

Moreover, the lower and upper bounds for xi1 are 0 and Θ = min{B,maxψ
∑|L|

l=1 θ
il
ψ},

while they are 0 and 1 for Sψ2 . Hence, it is possible to define the vertices of the piece-

wise linear curves for the three functions using these bounds and ratio parameters

αη = {0, 1
N
, 2
N
, . . . , 1} for η= 0, 1, ...N . A complexity in the piecewise linear represen-

tation involves the requirement that at most two adjacent values of γ··η are nonzero in

each representation to ensure global optimality. We do this by defining the variables

γXiη , γ
Sψ
η and γSXψiη as being members of specially ordered sets of type two (SOS2).

Given this structure, constraint (3.21) in FHAP-G can be replaced by the following

set of constraints to more accurately model the allocation rate based equity structure:

xi2 + x+ψi − x−ψi ≥

|L|∑

l=1

Sψ2 (θ
il
ψ + θ̃ilψ) +

ωψ1
2

+
ω2i

2
−
ωψ3i
2

∀i, ψ (3.37)
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Sψ2 =

N∑

η=0

γSψη αη ∀ψ (3.38)

xi1 = Θ
N∑

η=0

γXiηαη ∀i (3.39)

ωψ1 =

N∑

η=0

(αη)
2γSψη ∀ψ (3.40)

ω2i = Θ2
N∑

η=0

(αη)
2γXiη ∀i (3.41)

ωψ3i =

|L|∑

l=1

(Θ + 1)2
N∑

η=0

(αη)
2γSXψiη ∀i, ψ (3.42)

N∑

η=0

γSψη = 1 ∀ψ (3.43)

N∑

η=0

γXiη = 1 ∀i (3.44)

N∑

η=0

γSXψiη = 1 ∀i, ψ (3.45)

γSψη , γXiη , γ
SXψ
iη ∈ SOS2 ∀i, ψ, η (3.46)

Constraint (3.37) is the modified version of constraint (3.21) after linear approxima-

tion. Constraints (3.38) and (3.39) define the variables Sψ2 and xi1, and approximate

the squares of Sψ2 and xi1 as represented by ωψ1 and ω2i. The square of the sum-

mation of Sψ2 and xi1, which is defined by ωψ3i, is represented by constraint (3.42).

Constraints (3.43), (3.44) and (3.45) imply that the summation of these piecewise

approximation variables should be equal to 1. As the last constraint, (3.46) ensures

the SOS2 requirement for the newly introduced approximation variables.

3.3.3 Heuristic Simplifications

While different versions of FHAP can potentially be solved using direct solu-

tions of the deterministic equivalents for small number of scenarios, this becomes
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intractable for slight increases in the number of scenarios, especially for the enhanced

formulations described in Sections 3.3.1 and 3.3.2. To this end, we introduce two

heuristic approaches that simplify the solution process for the FHAP models, with

the aim of establishing practical and efficient solution structures for CDCs that they

can use more easily during potential implementations. We discuss the computational

implications of these simplifications in the numerical analyses performed in Section

3.4.

In the first heuristic approach (Heuristic-1), we assume that given a budget al-

location to a neighborhood, the property acquisitions from each category will be

proportionally based on the availability in that category. In other words, acquisition

levels are likely to be high for categories with high availability levels. This is reason-

able from a practical perspective since CDCs would typically desire to acquire more

housing units from categories and neighborhoods with high foreclosure rates.

The heuristic involves the solution of the corresponding FHAP models with these

fixed relationships among the variable values. On the other hand, due to the inte-

grality of the acquisition variables hψil, it is not possible to fix the acquisition variable

values directly as a function of resource allocations xi. Hence, we represent these

conditions through inequality constraints, rather than using equalities, which is fur-

ther described below. For presentation purposes, we describe the steps of the heuristic

approaches by referring to FHAP-S and then state how they would differ for FHAP-G:

Step 1. Add the following constraints to fix the number of acquired units as a

function of resource allocations:

hψil ≤

θil
ψ

∑|L|
l=1

θil
ψ

xi

cilψ
hψil ≥

θil
ψ

∑|L|
l=1

θil
ψ

xi

cilψ
− 1 ∀i, l, ψ (3.47)

Step 2. Solve the model to obtain resource allocation values xHi for each neigh-

borhood.
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Step 3. Evaluate the heuristic solution by setting xi = xHi and solving the original

model without constraints (3.47).

In Step 1, we fix the number of acquired units from each category in each neigh-

borhood according to the availability rate of each category. Then in Step 2, the total

budget is allocated by considering fixed acquisition amounts. As a last step, the

model is reevaluated and the acquisition quantities are updated based on the budget

allocated.

In the second heuristic simplification (Heuristic-2), we assume that property ac-

quisitions in each scenario will be made proportionally among categories based on the

ratios of expected social return over cost, which we refer to as ‘marginal social return’.

Hence, more acquisitions will be performed from categories with larger marginal so-

cial return values. This approach is intuitively and practically reasonable due to the

non-profit nature of CDCs and the role of social returns in their decision making.

Note that we implicitly assume the availability in each category will be such that the

allocation scheme is feasible. The implementation of Heuristic-2 is very similar to

the first heuristic, except that the constraints (3.47) to be added are replaced with

the following set of constraints: In the second heuristic simplification (Heuristic-2),

we assume that property acquisitions in each scenario will be made proportionally

among categories based on the ratios of expected social return over cost, which we

refer to as ‘marginal social return’. Hence, more acquisitions will be performed from

categories with larger marginal social return values. This approach is intuitively and

practically reasonable due to the non-profit nature of CDCs and the role of social

returns in their decision making. Note that we implicitly assume the availability in

each category will be such that the allocation scheme is feasible. The implementation

of Heuristic-2 is very similar to the first heuristic, except that the constraints (3.47)

to be added are replaced with the following set of constraints:
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hψil ≤

µil
ψ
/cil
ψ

∑|L|
l=1

µil
ψ
/cil
ψ

xi

cilψ
hψil ≥

µil
ψ
/cil
ψ

∑|L|
l=1

µil
ψ
/cil
ψ

xi

cilψ
− 1 ∀i, l, ψ (3.48)

These heuristics imply simple and practical rules for CDCs in their budget al-

location decisions. CDCs can easily determine the amount of budget to allocate to

different neighborhoods in an approximate way by looking at the relative ratios of

availability rates or returns.

As part of the adaptation of the above modifications into FHAP-G, first the

same constraints are defined for period one. In addition, similar constraints are also

included for period two by updating the notation of the acquisition and allocation

variables, as well as the uncertain parameter realizations, with their corresponding

second period counterparts.

3.4 Numerical Tests and Analyses Based on a Real-life Im-

plementation

In this section, we implement our models in a real-life decision making situation

based on data obtained from a CDC located in the city of Boston, Massachusetts. The

data was collected through records kept by the CDC as well as through interviews

with CDC staff. In addition, property value information used in the calculations

were obtained from the authors of Johnson et al. (2013). This CDC has expressed an

interest in decision aids to help them improve their capacity for longer-term strategy

design related to foreclosure housing acquisition and redevelopment. In this study,

we apply the models we have formulated to data provided by the CDC with the aim

of generating strategies that could potentially help this and other CDCs in achieving

their goals. Hence, our analysis involves both policy implications for the results

obtained from the solutions of the models, as well as some computational issues

related to the optimization models.
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3.4.1 Description of Data

The CDC in consideration has two alternative decision frameworks for strategic

resource allocation, which involve different geographical representations of their ser-

vice area. More specifically, the two alternatives assume that the CDC’s service area

can be split into either two or four distinct geographical regions. In addition to the

geographical split, these regions also reflect different levels of poverty in the corre-

sponding neighborhoods. The CDC is interested in an equitable and effective strategy

so that overall welfare in the service area is maximized. In order to achieve this objec-

tive, the organization will be acquiring and redeveloping foreclosed properties in each

neighborhood to be sold to owner occupants eventually. Similar to the alternative

geographical representations, we assume two alternative categorizations for the types

of properties to be acquired. In one case, the potential properties are categorized

into two groups, while in the other alternative four distinct categories of properties

are defined. We describe this categorization scheme in detail in the next paragraph.

Overall, the two alternative decision frameworks are defined by letting i = 1, 2 and

l = 1, 2 in one implementation, and i = 1, 2, 3, 4 and l = 1, 2, 3, 4 in another im-

plementation. We refer to these as “Case 2x2” and “Case 4x4”, respectively. The

geographical representations of the two cases, along with sample foreclosed property

availability counts, are shown in Figure 3.6. In addition to its practical relevance,

this structure also allows for a better analysis of computational efficiency from a

methodological perspective.
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1
2

Number of Available Units

Cat. 1=15

Cat. 2=11

Cat. 1=16

Cat. 2=15

(a) Service area and sample foreclosed property availability information
with two neighborhoods and two categories

Number of Available Units

Cat. 1=2

Cat. 2=3

Cat. 1=6

Cat. 2=1

Cat. 3=1

Cat. 4=6

Cat. 3=1

Cat. 4=7

Cat. 3=1

Cat. 4=7

Cat. 3=2

Cat. 4=6

Cat. 1=3

Cat. 2=3

Cat. 1=5

Cat. 2=3

(b) Service area and sample foreclosed property availability in-
formation with four neighborhoods and four categories

Figure 3.6. Categorization of CDC’s service area based on distinct geographical regions. Sample foreclosed property availability
information for each region and property category is also shown on the maps.
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A key issue in the modeling framework is the categorization of properties. We as-

sume that properties in each category have similar characteristics which are stochas-

tic and dependent on external market environments. While any type of classification

scheme can be used, i.e. based on cost, size or proximity to a specific location, a prac-

tical categorization can be based on the property value impacts. As noted previously,

PVI corresponds to the expected impacts on proximate property values from a single

foreclosure. Hence, PVI reflects a relative measure over the properties available for

potential acquisition, where it is natural to assume that the closer the PVI values

for given properties, the likelier it is for them to have similar attribute values, such

as returns and costs. For example, properties with high PVIs are typically located

in central and more desirable locations which imply higher acquisition costs and po-

tentially higher financial returns. The categorizations of properties in the numerical

study have been determined by considering their PVI values.

For both Case 2x2 and Case 4x4, empirical data was gathered to generate the

specific problem instances based on available information and expert opinions. Two

main data sets were used for this purpose. The first data set, obtained directly

from the CDC, consisted of information on properties being considered for potential

acquisition by the CDC in 2011. This information involved estimates of acquisition

and redevelopment costs for the properties, and estimated financial returns from

property sales. The second data set was obtained from the authors of Johnson et al.

(2013) and involved property value impact calculations for all the properties available

for acquisition in the CDC’s service area. Model inputs for the numerical study were

then created based on information extracted from these data sets. For each parameter

considered, histograms and other data displays were plotted as shown in Appendix

A to study the variation and correlation structures in the data sets. Based on these,

acquisition and redevelopment costs, total required budget to acquire all properties of

a given category in a neighborhood, and social returns (represented by standardizing
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the PVI values to vary between 0 and 1), were taken as stochastic parameters, while

financial returns were treated in a deterministic manner.

To characterize the uncertainty in the random parameters of cost, availability, i.e.

total required budget to acquire all properties, and social return for each property

category in each neighborhood, two-point probability distributions were used. To this

end, low and high realizations were computed as the values of the first and third quar-

tiles for each parameter under consideration. Given their exogenous dependence on

the economy, we assume in the implementations that the realizations of a parameter

for the same category are at the same level across all neighborhoods. For example,

if the cost value of a category l in a given neighborhood i is realized as ‘low’, then

the cost of category l in another neighborhood j is also realized as ‘low’. The set of

data showing possible cost, availability and return values for Case 2x2 of FHAP-S

is included in Table 3.1. The scenarios for the stochastic program were then gener-

ated by considering all possible combinations of the different levels of the stochastic

parameters in the model. The probability for each scenario was then calculated by

taking into account the correlation between cil and θil values as described in Section

3.1.1, and by assuming that the social return realizations are independent from the

realizations of these two parameters, where the low and high values for the latter

were assigned an equal probability of occurring. Given that the number of stochastic

parameters in each model configuration is different, the number of scenarios and thus

the complexity of models varies as well. We describe the number of scenarios in each

problem configuration in Section 3.4.6.

A total budget value of $5 million was used in the implementations, which is rep-

resentative of the resources available to the particular CDC considered, while values

for community efficacy were generated by normalizing relative crime rate information

in each neighborhood so that the values have a range between 0 and 1. Distances

between neighborhoods were estimated through existing Geographic Information Sys-
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Cost (cil) Availability Value (θil) Social Return (µil)
Low High Low High Low High

Neigh. 1 Cat.1 $389,000 $575,000 $3,090,000 $ 5,935,000 0.966 0.998
Cat.2 $405,000 $641,000 $4,090,000 $ 4,450,000 0.886 0.997

Neigh. 2 Cat.1 $303,000 $425,000 $4,574,000 $ 4,990,000 0.947 0.986
Cat.2 $329,000 $431,000 $4,314,000 $ 4,675,000 0.895 0.997

Table 3.1. Data representing possible stochastic parameter realizations for FHAP-S
Case 2x2.

tem (GIS) data. Finally, social return function thresholds for FHAP-G were defined

based on expert opinions resulting from consultations with CDC staff. The specific

values of the deterministic parameters used in the study are summarized in Appendix

A for Case 2x2. The computational analysis was based on an equally weighted ob-

jective structure. Using this problem setup, optimal budget allocation decisions to

different neighborhoods were obtained for the CDC in consideration.

3.4.2 Value of Application of Optimization Models

In this section we study the potential value that can be added to CDC opera-

tions by applying the optimization models presented in the study. This is done by

comparing the results from the optimization models with the objective levels to be

achieved when a resource allocation structure similar to current practice is assumed.

We note that our CDC partner did not have a systematic procedure that they im-

plemented in determining resource allocations to different neighborhoods. Rather,

it involved an ad hoc process, which typically meant equal resource allocations to

different parts of their service area. The allocated amounts were then used to acquire

foreclosed properties again through an ad hoc process. Hence, to be able to assess

the differences from an optimal strategy, we represent this practical framework by

assuming that the available budget is split equally among different neighborhoods.

The ad hoc acquisition strategy after resource allocations is studied through three al-

ternative configurations, given that there is no specific system that the CDC utilizes
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Obj. Equal Alloc.- Equal Alloc.- Equal Alloc.- Opt. Alloc.-
Type Highest Return Lowest Cost Optimal Acq. Opt. Acq.

FHAP-S -G FHAP-S -G FHAP-S -G FHAP-S -G

Overall 0.80 0.70 0.80 0.68 0.89 0.79 1.0 1.0

Obj. 1 0.80 0.88 0.80 0.83 0.80 0.90 1.0 1.0
Obj. 2 0.88 0.92 0.89 0.90 0.95 0.94 1.0 1.0
Obj. 3 0.87 0.61 0.87 0.56 0.91 0.61 1.0 1.0
Obj. 4 0.62 0.35 0.63 0.33 0.90 0.58 1.0 1.0
Obj. 5 0.63 0.37 0.65 0.36 0.81 0.55 1.0 1.0
Obj. 6 0.77 0.82 0.78 0.77 0.85 0.94 1.0 1.0
Obj. 7 1.0 0.99 1.0 0.99 1.0 1.0 1.0 1.0
Obj. 8 - 1.0 - 1.0 - 1.0 - 1.0

Table 3.2. Comparison of standardized objective values for the equal budget alloca-
tion strategy, which represents the current practice, and the optimal allocations for
FHAP-S and FHAP-G Case 2x2.

for this purpose. We refer to the resulting cases as equal allocation-highest return,

equal allocation-lowest cost, and equal allocation-optimal acquisition.

In equal allocation-highest return, we assume that after the budget is allocated

equally among neighborhoods, individual acquisition decisions prioritize properties

with the higher return values. In other words, first the highest return properties

are aimed for acquisition, followed by the next highest if budget still remains, etc.

The equal allocation-lowest cost strategy assumes that the prioritization is based

on costs of properties, and lower cost properties are acquired first. Finally, equal

allocation-optimal acquisition configuration assumes that the acquisition decisions

are determined optimally based on the objective structure in the models. Note that

the equal allocation-optimal acquisition strategy would result in the best possible

value for the CDC given an equally split budget during the allocation phase. Hence,

the difference between the corresponding objective values in this case and the optimal

solutions constitutes a lower bound for the value of application of optimization models

developed.

In Table 3.2 we show a comparison of the standardized objective values for each

policy described above under FHAP-S and FHAP-G implementations. The objec-
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Financial Gain Social Gain
Policy FHAP-S FHAP-G FHAP-S FHAP-G

Equal Alloc.-Highest Return $0 $4,694 $0 $18,905
Equal Alloc.-Lowest Cost $2,208 $0 $44,973 $0
Equal Alloc.-Optimal Acq. $60,521 $55,302 $242,602 $252,877
Optimal Alloc.-Optimal Acq. $80,871 $144,150 $489,710 $853,813

Table 3.3. Comparison of gains in financial and social returns as modeled through
Objectives 4 and 5 under different policy implementations.

tive values have been standardized so that the optimal solutions correspond to an

objective value of 1.0. As highlighted above, the equal allocation cases represent the

current practice. For FHAP-S, Optimization through our modeling framework can be

observed to result in an increase of between 10-20% in the overall value of foreclosed

housing acquisition policies. Of the specific objectives, the most significant impact

is on Objectives 4 and 5, which correspond to maximization of financial returns and

social utility, respectively.

The value of optimization over the current practice increases for the FHAP-G

model. This is expected, as the uncertainty is captured in a more accurate fashion

in this implementation. For FHAP-G, a difference of between 20-30% is observed

between the current practice and optimal policies. Again, the most significant value

is added through the financial and social utility objectives, implying that equity

is achieved at a somewhat high level under the current practical implementations.

In Table 3.3 we show the differences in financial and social returns under different

implementations in terms of dollar values. Each data column in the table displays

the difference between the expected return of a given policy and the lowest expected

return among all policies. For example, in the last column we see that equal allocation-

lowest cost policy would create the lowest social return as measured through the PVI

values. By using the optimal policy the CDC can create an additional value of around

$600,000 in property value impacts in their service area when compared with the
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equal allocation-optimal acquisition policy. By the nature of the restricted financial

return structure, the gains in financial returns are lower. Overall, however, the gains

through optimization can be consistently observed for all cases, especially in terms of

social returns. In Section 3.4.3, we describe the implications of the optimal resource

allocation decisions and how changes in different problem parameters impact these

decisions.

3.4.3 Resource Allocations and Impacts of Model Parameters

In this subsection we investigate the implications of the resource allocation deci-

sions form a practical perspective and how changes in different problem parameters

impact these decisions. For the practical implications of the allocation decisions, we

note that no detailed quantitative information was available for one to one compar-

isons with historical budget allocation decisions of the CDC studied. This was be-

cause the specific CDC made such decisions through an ad hoc process, which mostly

involved equal resource allocations to different parts of their service area. Hence,

through consultations with CDC staff, the design of a structured strategic resource

allocation process, as well as the implications of using different quantitative measures

in that process, were noted to be the relevant issues from a practical perspective.

To this end, in this section we try to analyze the structure of our decision models,

specifically with respect to their sensitivity to different model parameters, while the

latter issue involving implications of different objectives is addressed in Section 3.4.4.

Our sensitivity study is based on three key parameters in the modeling frame-

work, which represent general inputs, as opposed to neighborhood specific parameters.

These inputs consist of the available budget to be allocated, and the two threshold

parameters τ1 and τ2 used in defining the social returns from foreclosed property ac-

quisitions when investment dependent return is modeled. For each parameter, we

consider a range of possible values and study how the allocations to different neigh-
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Figure 3.7. Change in optimal resource allocations and objective function value over
different budget levels.

borhoods as well as the overall objective function value change over that range. To

provide a clearer illustration, the analyses were performed on Case 2x2 of the FHAP-S

model with the investment dependent return structure.

In Figure 3.7 we show how the resource allocations and the optimal objective

function value vary over a range of budget values. It is observed that the model is

quite robust to changes in the budget. First, the increase in the optimal objective

function value is minimal as the budget increases. This is likely due to the limitations

imposed by the current availability of the foreclosed properties, as well as due to

the multi-objective structure of the problem. Even though more properties may be

acquired with larger budgets, it does not necessarily mean that these acquisitions

would help increase the value of all objectives. While it would increase utility based

objectives, it may have a negative impact on the equity objectives. A similar robust

structure, although to a smaller extent, is observable in resource allocation decisions

as well. For the given empirical setting, a budget split of 55%-45% is optimal for

budget amounts larger than $4 million. On the other hand, there is a change towards
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a 60%-40% split at lower budget levels, which may be due to the decrease in the

number of options to balance utility and equity. We also note that these resource

allocation decisions have been deemed practically plausible by the CDC considered

in the study.

In Figure 3.8 we present the analysis results for the parameters τ1 and τ2 used

in modeling the social returns. These values were selected for a sensitivity analysis

as they are mostly based on expert opinion and few mathematical models exist on

such return functions. On the other hand, we observe for both parameters that

the optimal objective function value remains mostly the same despite the change in

the parameter values, except for lower τ2 values which enable increased joint return

realization without much impact on equity. Optimal budget splits also show a similar

pattern.

Overall, the model solutions are quite robust with respect to increases and minor

decreases in the general input parameters of budget and investment dependent return

thresholds. This robustness result is a strengthening argument for the conclusions

reached for the given empirical setting, and is likely to hold unless foreclosure rates,

which are currently at high levels, increase significantly to result in an even larger

number foreclosed properties becoming available for acquisition.

3.4.4 Comparison of Financial vs. Nonfinancial and Equity vs. Utility

Based Objective Optimization

As part of our analysis of the impact of using different objectives, which was ob-

served to be of interest to the CDC studied, we consider two trade-off situations in

FHAP. These situations deal with financial versus nonfinancial goals, and equity ver-

sus utility objectives. These issues are especially relevant and unique to our analysis

due to the social dimensions involved in the optimization. We emphasize here that

our analyses are numerical and experimental. Hence, any conclusions are based on
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(a) Analysis for parameter τ1

(b) Analysis for parameters τ2

Figure 3.8. Change in optimal resource allocations and objective function value over
different values of parameters τ1 and τ2.
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the real-world data obtained from the CDC we interacted with. On the other hand,

it can potentially be assumed that similar conclusions are likely to be reached for

organizations operating in scales similar to this CDC, as there is anecdotal evidence

that the CDC studied can be representative of typical CDC operations in other major

cities (NeighborWorks, 2009).

We first analyze how financial objective optimization in FHAP relates to nonfi-

nancial objective optimization. In this analysis, the profit objective, i.e. Objective 4,

is categorized as financial, while all other objectives are categorized as nonfinancial

measures. We apply the constraint method of Collette and Siarry (2003) to these two

aggregate objectives, and the result of this analysis is Pareto curves representing the

trade-offs between the two categories. Figure 3.9 contains Pareto curves for the base

cases of FHAP-S and FHAP-G.

Our main observation is that the trade-off is not so significant and thus inclusion

of financial objectives in FHAP do not detract much from the social and equity based

objectives. This is especially the case for FHAP-S, where only two decision epochs

are involved in the optimization. More specifically, we note that even if purely fi-

nancial objectives were considered, it would still imply around 92% fulfillment of

non-financial objectives for FHAP-S and 87% fulfillment for FHAP-G. We also note

that the trade-off is slightly biased towards the nonfinancial objectives in both mod-

els, where nonfinancial optimization would imply around 89% fulfillment of financial

objectives in FHAP-S, while this rate is 83% for FHAP-G. This is somewhat expected

as nonfinancial goals involve several different objectives that the optimization tries

to achieve, as opposed to a single objective involving financial profit. While we do

not show Pareto plots for alternative configurations of financial and non-financial ob-

jectives, the trade-offs in those configurations are also observed to be similar to the

base case analysis described above. Overall, our analysis shows that even if the CDC

makes its acquisition decisions purely based on financial returns, it would still imply
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(a) FHAP-S

(b) FHAP-G

Figure 3.9. Pareto curves of financial and non-financial objectives for base models
of FHAP-S and FHAP-G.
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around 90% fulfillment of social objectives. The trade-off between financial profit and

non-financial objectives is not so significant and thus inclusion of financial objectives

in decision making does not take away much from the social and equity based objec-

tives. In other words, for the service area considered financial and social values of the

properties are mostly positively correlated.

An important issue for most nonprofit organizations is how to ensure equity in

their services as they try to maximize socio-economic utility. We analyze this issue

by categorizing the multiple objectives considered in FHAP as equity versus utility

objectives. To this end, we assume that equity related to collective efficacy, allocation

rate and owner occupancy, i.e. Objectives 1, 3, and 6, represent the equity related

objectives; while the economies of scale, financial return, social utility and efficient use

of budget, i.e. Objectives 2, 4, 5, and 6, are utility based objectives. We then perform

a Pareto analysis similar to the financial versus nonfinancial objective case above. In

Figure 3.10 we display the trade-off curves for equity versus utility objectives for the

base cases of the two model types.

We observe that the two models behave somewhat differently with respect to the

corresponding values of the two objective types. Overall, utility maximization will

achieve around 80% equity, while equity maximization would achieve around 95% of

utility in FHAP-S. These rates are around 74% for both cases in FHAP-G. Thus,

the two objective types have more of a trade-off when compared with the previous

analysis, specifically for FHAP-G. This suggests that, although the magnitude of

the trade-offs between the two classes of objectives is not large, for a socially focused

organization in this framework the optimization of equity is likely to imply a somewhat

less efficient strategic allocation and vice versa. The results for other configurations

are also similar, and organizations can choose to balance the emphasis on equity versus

utility based on the Pareto representations. For example, it is possible to achieve

around 85% equity and same levels of utility through an optimal solution on the
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(a) FHAP-S

(b) FHAP-G

Figure 3.10. Pareto curves of equity and utility objectives for base models of FHAP-
S and FHAP-G.
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Pareto curve for FHAP-G. Overall, we observe that if equity is not considered in CDC

acquisition selections, it is expected that these acquisitions will be approximately 20-

25% less equitable between different regions than an ideal equitable selection decision.

Such a conclusion can be useful in discussions with community representatives of

neighborhoods. We note that we also consider selected trade-offs between individual

model objectives, and discuss the resulting conclusions in Section 3.4.5.

3.4.5 Value Path Analysis

In this subsection we consider selected trade-offs between model objectives through

value path analyses. Figure 3.11 shows value paths for the equity objectives in the

FHAP-S and FHAP-G base configurations. Objectives 1, 3, and 6 correspond to

equity objectives related to collective efficacy, allocation rate and owner occupancy,

respectively. Each distinct line in the value path represents the performance of a

corner point solution to the multiobjective problem according to all objectives. The

vertical axis represents the extent to which each model instance achieves the most-

desired value for a particular objective. Here we observe a somewhat similar behavior

between FHAP-S and FHAP-G base configurations.

When the collective efficacy based equity measure, i.e. Objective 1, is optimized

in FHAP-S, all other equity measures are at or close to their minimal levels, imply-

ing that different equity objectives are not always synergistic for the neighborhood

data considered. A similar observation can also be made for FHAP-G. The pattern

is somewhat different when the maximization of the allocation rate and owner occu-

pancy based equity objectives are considered individually. Some positive association

is observed between the allocation rate based equity measure and efficacy, as both

are typically at high levels when one of these objectives is maximized. Indeed, the

optimization of owner occupancy is also synergistic with all other equity objectives,

although it is not as strong in FHAP-S where efficacy and allocation rate objectives
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(a) FHAP-S

(b) FHAP-G

Figure 3.11. Trade-off graphs for equity objectives of base models of FHAP-S and
FHAP-G.
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are slightly below their maximum levels when owner occupancy objective is maxi-

mized. Overall, we conclude that maximization of collective efficacy measure by itself

would imply some deviation from fulfilling the allocation rate and owner occupancy

related equity objectives, while strong synergistic effects exist between the latter two

objectives. On the other hand, it should be noted that due to the potential existence

of alternative solutions and the dependency on the data used in the analysis, these

insights may not hold at the identified levels for different data or applications.

In Figure 3.12 we display value paths for FHAP-G with investment dependent

return and with both investment dependent return and reformulated constraint (3.21).

As expected, the former has similarities to the base FHAP-G case. An interesting

observation deals with the optimal value of Objective 3, which is related to constraint

(3.21), in the overall optimization results shown this figure. Although the difference

is not very large, this value is higher than the corresponding value shown for the

base FHAP-G case. Hence, it may be concluded that the improved representation of

(3.21) impacts the model such that Objective 3 is better defined and maximized at a

higher level. On the other hand, the investment dependent return structure and the

reformulated constraint do not have a significant impact on the trade-offs with respect

to the equity related objectives, i.e. the general pattern is similar to the base FHAP-G

model.

A similar value path analysis is also performed for utility objectives. In Figure

3.13 we show such curves for the utility objectives, where Objectives 2, 4, 5, 7, and

8 respectively correspond to the economies of scale, financial return, social utility,

efficient use of budget, and the reallocation penalty objectives. Here it can be observed

that Objectives 2 and 4 do not have significant trade-offs among each other, while

Objectives 5 and 7 appear to be negatively correlated with these objectives. Hence,

if objectives related to the economies of scale and financial returns are maximized

independently, the efficiency in other utility objectives involving social utility and
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(a) FHAP-G with investment dependent return

(b) FHAP-G with investment dependent return and reformulated
constraint (3.21)

Figure 3.12. Trade-off graphs for equity objectives of investment dependent re-
turn extension of FHAP-G with and without reformulation of reallocation constraint
(3.21).
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(a) FHAP-S

(b) FHAP-G

Figure 3.13. Trade-off graphs for utility objectives of base models of FHAP-S and
FHAP-G.
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budget utilization is reduced. On the other hand, as expected, the reallocation penalty

based goal represented by Objective 8 is synergistic with all other objectives. This

behavior is also similar for other configurations of the problem.

3.4.6 Value of Alternative Formulations and Heuristic Approaches

Another analysis that we perform involves the computational aspects of different

formulations, specifically to identify lost value if acquisition decisions were to be made

according to rule-based heuristics. To this end, we consider the complete stochastic

mixed-integer programming (SMIP) solutions of the given formulations, as well as

the two simplifying heuristic approaches. We note here that while the problem is a

strategic one, where computational times are typically not a significant concern, the

proposed decision models are aimed at serving as guides to CDCs in their decision

making process. As a result, during the planning stage multiple alternative parameter

values can be used and tested from a sensitivity analysis perspective, which would

require multiple solutions for the problem. Hence, relatively quick solution generation

is likely to have some relevance for practical implementation of the proposed models

as well.

The computational results for different instances and versions of FHAP are shown

through the tables 3.4 - 3.6 for this study. Computations were performed on a PC

with Intel i5 Core processor with 2.3 GHz speed and 4 GB memory. All solutions

were obtained using the CPLEX 12 solver, where implementations were performed in

the General Algebraic Modeling System (GAMS).

One consideration for our research is that given the implementation challenges of

advanced optimization models by CDCs, it may be possible that simplified heuristic

approaches, which can be implemented more easily, can be used as decision aids by

these organizations. Hence, we are specifically interested in the lost value when such

heuristic approximations are used. We first note that the two heuristics proposed are
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more efficient from a computational perspective, allowing for solutions in reasonably

short run times, i.e. much less than one hour. Moreover, the quality of the solutions

appear to be quite high for all cases. The overall average computational improvement

is around 60% for the two heuristics for FHAP-S, while the corresponding values

are even higher, i.e. around 68%, for FHAP-G. Indeed, improvements are much

higher for the more complex Case 4x4 configurations. The observed difference in

terms of objective function values is around 4% for FHAP-S when averaged over all

instances, while this gap is around 2% for FHAP-G. Hence, it can be concluded that the

proposed rule-based heuristic approaches can be chosen as reasonable alternatives to

the complete SMIP optimization as the expected difference from optimality is around

4%. Complete SMIP implementation results in long computational times, especially

as larger problem instances are considered. Indeed, the effectiveness of the heuristics

increases with computational complexity.

We also compare the computational efficiency of different formulations. More

specifically, we compare the computational times for the base and investment depen-

dent return models. We note that the inclusion of investment dependent returns adds

significant complexity to the model, as observed in the CPU times of the complete

SMIP solutions for both models. For example, FHAP-S can not be solved in the one

hour of allocated time when investment dependent return structure is used. Similar

observations can also be made for FHAP-G that the computations take more than

an hour for all such implementations. Hence, for the complete SMIP models, the

computational challenges associated with the inclusion of investment dependent re-

turns should be considered. On the other hand, this issue is not the case for heuristic

approaches, as we described above.

As another comparative analysis, we consider the value of the reformulation of

constraint (3.21) for FHAP-G based on the information in computational result ta-

bles provided as Table 3.5. The base and investment dependent return configurations
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for this model are based on an approximation of this constraint, which is a more

restrictive formulation. Hence, the reformulation allows for potential improvement

in the expected utility of the investments. For both the complete SMIP and heuris-

tic formulations, the utility increases about 10% when the reformulation is used.

The only trade-off involves the computational complexity added due to the piece-

wise approximation used as part of the reformulation of (3.21). The results show

that the reformulated model performs worse computationally, especially for the com-

plete SMIP approach. In those cases, a deterioration of around 20% is observed in

the computational times for FHAP-G, since additional complexity through the SOS2

variables is added to the model.
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Base Inv. Dep. Ret.
Case # of Obj. Obj. CPU CPU Obj. Obj. CPU CPU

FHAP-S Scen Val. % Gap (sec) % Gain Val. % Gap (sec) % Gain
Complete SMIP 2x2 16 0.934 - 8.7 - 0.96 - 20.1 -

4x4 256 0.887 - 1340.2 - 0.909 - 5702.5 -
Heuristic-1 2x2 16 0.934 0.0% 6.4 26.3% 0.958 -0.2% 15.2 24.1%

4x4 256 0.751 -15.3% 83.4 93.8% 0.884 -2.8% 1175.1 79.4%
Heuristic-2 2x2 16 0.934 0.0% 6.2 28.7% 0.96 -0.0% 16.9 15.6%

4x4 256 0.764 -13.9% 61.7 95.4% 0.885 -2.6% 219.5 96.2%

Table 3.4. Computational results for the base model and investment dependent return extension of FHAP-S.

Base Reformulated (3.21)
Case # of Obj. Obj. CPU CPU Obj. Obj. CPU CPU

FHAP-G Scen Val. % Gap (sec) % Gain Val. % Gap (sec) % Gain
Complete SMIP 2x2 1024 0.880 - 245.7 - 0.955 - 325.2 -

4x4 4096 0.845 - 4527.4 - 0.947 - 5137.8 -
Heuristic-1 2x2 1024 0.873 -0.8% 106.0 56.9% 0.955 -0.0% 197.1 39.4%

4x4 4096 0.837 -0.9% 802.6 82.3% 0.927 -2.1% 881.4 82.8%
Heuristic-2 2x2 1024 0.875 -0.6% 114.8 53.3% 0.951 -0.4% 127.3 60.9%

4x4 4096 0.836 -1.0% 638.3 85.9% 0.934 -1.4% 725.9 85.9%

Table 3.5. Computational results for the base model and reformulated allocation rate constraint extension of FHAP-G.
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Inv. Dep. Ret. Reform. (3.21)- Inv. Dep. Ret.
Case # of Obj. Obj. CPU CPU Obj. Obj. CPU CPU

FHAP-G Scen Val. % Gap (sec) % Gain Val. % Gap (sec) % Gain
Complete SMIP 2x2 1024 0.884 - 284.6 - 0.959 - 426.1 -

4x4 4096 0.862 - 6444.7 - 0.913 - 7091.9 -
Heuristic-1 2x2 1024 0.861 -2.6% 100.7 64.6% 0.94 -2.0% 215.7 49.4%

4x4 4096 0.849 -1.5% 698.5 89.2% 0.850 -6.9% 1798.1 74.6%
Heuristic-2 2x2 1024 0.88 -0.5% 183.8 35.4% 0.933 -2.7% 191.5 55.1%

4x4 4096 0.841 -2.4% 708.4 89.0% 0.898 -1.6% 921.1 87.0%

Table 3.6. Computational results for the investment dependent return extension of FHAP-G with and without reformulation
of allocation rate constraint (3.21).
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In the computational result tables, the first and second columns indicate the

solution method used and the case type for the corresponding version of FHAP, while

the third column shows the number of scenarios in each instance. The other columns

describe the results obtained for each version by listing the objective function value

obtained, its percent difference from the best solution, the computation time and its

percent difference from the computation time of the complete SMIP solution. The

base configurations correspond to the basic formulations of FHAP-S and FHAP-G as

described in Sections 3.1 and 3.2, respectively. The investment dependent return and

reformulated (3.21) configurations are the model extensions introduced in Sections

3.3.1 and 3.3.2. Note that reformulation of (3.21) applies only to FHAP-G, where the

introduction of gradual uncertainty resolution results in a complexity in the definition

of constraint (3.21). The second configuration in the third result table considers both

the reformulation structure and investment dependent returns for FHAP-G.

3.4.7 Policy Implications for CDCs

The policy implications of our study arise from our use of real-world based data

that represent the strategic decision framework of a particular CDC. While our conclu-

sions specifically apply to this data set, it is possible that the operating environments

for many other CDCs are similar in nature, for which some anecdotal evidence exists

as noted previously. Hence, we believe that our general findings can be helpful for

such organizations in devising strategic investment plans.

CDCs can benefit from the results of this study in two ways. First, as a direct

utilization, the optimization models can potentially be implemented to identify a

benchmark resource allocation strategy as defined by the model assumptions and

inputs. This benchmark strategy can be adjusted based on any other qualitative

inputs that may exist, and the adjusted strategy can be used directly to allocate

resources to different neighborhoods. As an alternative, the model results can be
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used to assess or justify the existing resource allocation policy of a given CDC, or to

guide other routine activities. Second, as an indirect utilization, the policy related

conclusions we reach through our numerical analysis, which is based on a typical

CDC operation, can be used for general guidance in strategic resource allocation or

property acquisition by CDCs. We specify these general policy implications in the

following paragraphs.

For general policy guidelines, first we note that the optimal resource allocation

strategy, which involves splitting of the budget among different neighborhoods, is

quite robust for different budget levels and return function parameters. Hence, CDCs

can adjust the resource allocations proportionally if fund availabilities change during

the planning period.

Second set of policy implications deals with the emphasis on different optimization

objectives. The results suggest that there is no significant conflict between financial

and nonfinancial objectives. While this conclusion is based on the numerical data

used for this specific case study, it is likely that if a CDC makes its acquisition

decisions solely based on financial returns, it would still imply around 90% fulfillment

of social objectives. Hence, CDCs can simply consider only financial objectives in

their acquisition policies and this would not result in huge loss of social value.

While still not very significant, the trade-offs are a bit more apparent when equity

objectives are considered with respect to utility. Thus, it is important for CDCs

to consider equity in their resource allocation and property acquisition processes,

as otherwise the resulting social value may be high but unbalanced among different

parts of their service area. Optimizing investments based on only social returns may

imply some inequity between neighborhoods, corresponding to an observed loss of

equity around 20-25%. This conclusion is of course dependent on the distribution of

different category properties across the service area. For the case study presented,

this distribution is not significantly biased towards a specific subset of neighborhoods.
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This relatively even distribution of neighborhood parameters can be expected to be

observed in other CDC service areas as well given their typically focused geography.

Hence, the results are likely to be applicable to other CDC operations, too.

In addition, CDCs can take into account that the collective efficacy measure is

not necessarily synergistic with other equitable allocation objectives such as those

involving allocation and owner occupancy ratios in neighborhoods. On the other

hand, the latter two equity objectives are strongly correlated implying that focusing

on one would also increase the effectiveness level in the other. CDCs should also

note that if they try to take advantage of economies of scale by investing mostly in

proximate properties, this will have a somewhat significant negative impact on the

social utility achieved through such a policy.

A third category of policy implications relate to the use of rule-based heuris-

tics. Given the objective structure presented and assuming that budget allocations

to different neighborhoods are done as efficiently as possible, selecting property ac-

quisitions based on relative marginal returns or availabilities over different categories

does not result in significant loss of overall utility for CDCs. For most cases, this loss

is expected to be less than 4% with respect to an optimal strategy. Hence, in the

absence of any optimization implementations, CDCs can consider using such general

rule-based acquisition strategies.

3.5 Conclusions

In this chapter, we studied stochastic dynamic models for resource allocation and

foreclosed property acquisition to provide some general evidence-based guidance to

a specific CDC, with potentially broader implications. To this end we first devel-

oped a two-stage stochastic programming formulation, and then expanded this model

through a multi-stage structure involving gradual uncertainty resolution. We also

studied two variations in these models in order to capture some additional com-
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plexities. Finally, an empirical analysis has performed based on real-world data for

practical and computational evaluations.

While our conclusions are based on the specific numerical data used, we demon-

strate through our analyses that CDCs can benefit from the utilization of the pro-

posed models either through direct implementation for specific strategic guidance, or

through the indirect use of several policy results obtained. We further show that two

simplistic heuristic improvements result in increased efficiency without a significant

optimality gap, indicating the potential practical value of these approaches.

A specific characteristic of our analysis is that we build our models through inter-

actions with a CDC, and use real-world data to test them. As a first stochastic model

of its type in this application area, our study is aimed to provide strategic resource

allocation guidelines for practitioners through explicit consideration of uncertainty.
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CHAPTER 4

TACTICAL SOCIETAL RESOURCE ALLOCATION IN

FORECLOSED HOUSING ACQUISITION

In this chapter, we consider a CDC that faces decisions on potential acquisitions of

foreclosed properties that become available over time in their service area. By being

available, we refer to the case that a property is placed on market for potential sale

by a bank or other mortgage holder, and that the property is potentially approvable

for acquisition by a funding source. When a foreclosed property is put on sale, an

important advantage for CDCs and other similar entities is their priority in making

offers on the property. This is due to requirements put in place by most financial

institutions through the National First Look Program, which provide owner occupants

and public entities that are committed to the community an early opportunity to bid

for a foreclosed property. As part of this policy, only offers from owner occupants

and buyers using public funds are considered during the first 15 days a property is on

the market, and offers from investors are considered only after the first 15 days have

passed. This allows for a higher likelihood of a successful offer for CDCs due to the

relatively fewer competitors in the process (Axel-Lute and Hersh, 2011). We further

describe the details of this decision framework in the following section

4.1 Tactical Foreclosed Acquisition Model

We assume that the availability of foreclosed properties for potential acquisition

follows a Poisson process with rate λ as suggested by analysis of historical data. The

availability rate λ is typically related to the conditions of the economy and the housing
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market. A high availability rate implies a poor state of economy where foreclosure

rates are high, while low rates would indicate that the economy and the housing

market are in better condition. We note here that λ is assumed to be stationary, i.e.

we do not model a dynamic environment where the state of the economy fluctuates,

due to the long-term dynamics of such fluctuations. On the other hand, we analyze

later in the study how optimal policies change for different availability rate levels.

At the beginning of the planning period, CDC has an estimate of the total fund-

ing that they can potentially access through various sources during that period. This

funding level, which we denote by B, represents the total amount of credit or other

funds that the CDC can assume to be potentially available for foreclosed property ac-

quisition. The total amount of accessible funds is typically well estimated by CDCs, as

they depend on their existing lines of credit with banks or the fixed grants available

through various government programs. Suppose T ∈ (0,∞] denotes an expiration

time for the available funds, after which any unused funds will have no value. This

time limitation typically depends on the funding source. For example, certain govern-

ment funds have deadlines that they need to be used by, while other resources such

as donations may not have any such stipulations, implying that they can be used

anytime.

When a foreclosed property is placed on market by the lender, it has an associated

asking price, usually based on the price opinion of a broker with experience in the

area. In addition, CDCs can also perform a market analysis themselves to estimate

the market value of a foreclosed property. Without loss of generality, we assume

that the asking price is a lower bound on a foreclosed property’s market value, as

well as on the amount required for a successful offer. This is quite typical in the

regular operation of the real estate market, as banks or other lenders would often

have lower asking prices on foreclosed properties due to their desire to sell these

properties quickly. Hence, such properties would typically sell at above the asking
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price, and offers would involve overbids. We let C ∈ [C, C̄] denote the asking price

for a foreclosed property, which represents the minimum resource requirement for the

acquisition of that property. The asking price of a property is defined by a probability

distribution f(c).

Similar to the asking prices, the social-return from a property, denoted by R ∈

[R, R̄], is also stochastic and is characterized by a probability distribution f(r), or

f(r, c) if social-returns and the asking prices are correlated. Estimating the social-

return from the acquisition and redevelopment of a foreclosed property is clearly

difficult. Johnson et al. (2013) highlight this challenge, and develop a measure vali-

dated by some CDCs, which is based on the impact of the acquisition of a foreclosed

property on the appreciation of the value of nearby properties. As also noted in

Chapter 3, more formally, the property value impact (PVI) measure is defined as

the expected impact on proximate property values from a given foreclosure. This

measure is directly related to the geographical location of a property, and can easily

be calculated through the procedure described by Johnson et al. (2013) for each fore-

closed property that becomes available for acquisition. In this chapter, we use PVI

values that we obtained from Johnson et al. (2013) directly without normalization.

Thus, PVI values used in this chapter are in units of dollars. We emphasize here that

our focus is on the returns to the society, and hence we do not model any financial

returns for the CDC which may be realized due to the rental or sale of an acquired

property. The latter involves a much broader scope with a focus towards the overall

operation of a CDC, as opposed to foreclosed housing acquisitions. Moreover, several

CDCs that were consulted noted the maximization of the impact on property values

as being their objective in foreclosed property acquisitions. This is somewhat natural,

as most resources such as government funds for foreclosed property acquisition are

aimed at appreciation of home prices and stabilization of the housing market.
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Observing a foreclosed property entering the market at time t ∈ [0, T ] with an

asking price c, a CDC first decides whether they should consult with the funding

source and make an offer on the property. If an offer decision is reached, then the

next decision involves the determination of the amount to offer. We model the offer

amount decision at time t, for a remaining fund level b, through an overbid rate

parameter δbct ∈ [0, δ̄c], which corresponds to the percent difference between the offer

amount and the asking price c. This notation implies that the overbid rate can vary

over the planning horizon, and the limits on the overbid rate can differ based on the

asking price of a given property. We denote δbct as a percentage, e.g. δbct = 0.05

implies that the offer amount is 5% over the asking price. The probability of success

for an offer, i.e. the probability of winning a bid, is an increasing function of the

overbid rate, and is denoted p(δbct). As part of our analysis, we assume that p(δbct)

can be any general increasing bounded function.

When an offer is made on a foreclosed property, an overhead cost corresponding

to the time and other expenses required to make the offer is incurred by the CDC.

This cost is typically a certain percentage G of the offer amount, and can be defined

as g(c, δbct) = (c + cδbct)G, where c + cδbct is the offer amount. While it may not

typically hold in practice, a fixed cost assumption is also possible here, in which case

the analytical derivations would apply in a simpler way. If the offer is not accepted

by the seller, then this cost is sunk. Hence, g(c, δbct) can be interpreted similar to a

penalty cost for not acquiring a property on which the CDC has made an offer.

Given this decision framework, the objective for the CDC is to determine a policy

involving offer/no-offer decisions and overbid rates that maximize the expected total

social-return accumulated over a given planning horizon. In the following sections,

we first summarize the notation used in the model and then describe the model

formulation.
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4.1.1 Notation Used in the Model

b: Available accessible funds at any given time

B: Available accessible funds at the beginning of the planning period

c: Asking price for a foreclosed property

C, C̄: Minimum and maximum possible asking price for a property

f(c): Marginal probability distribution of property asking prices

f(r, c): Joint probability distribution of asking prices and property

value impacts

g(c, δbct): Overhead costs representing expenses required to make an offer

on a property

G: Rate at which overhead costs are incurred defined as a percentage

of the offer amount

p(δbct): Probability of success for an offer on a property

r: Property value impact of a foreclosed property representing returns

from acquisition

R, R̄: Minimum and maximum possible property value impact of a

property

T : Time of budget expiration

V (bt): Expected total property value impact from an available budget

b at time t

x(δbct): Property value impact threshold used to decide whether an offer

should be made on a property

α: Discount rate

δbct: Overbid rate defined as the percent difference between the asking price

and offer amount

λ: Rate that foreclosed properties become available for acquisition

τ : Discretization factor used in the discrete approximations
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4.1.2 Model Formulation

Note that when the CDC makes an offer of c+ cδbct ≤ b on a foreclosed property

and the offer is accepted, for which the probability is p(δbct), the property is going

to be acquired and a social-return r, defined in terms of the associated PVI, will be

realized. If the offer is not accepted, then the overhead expenses g(c, δbct) are lost.

These expenses do not come out of the acquisition funds, but rather from the general

operating budget of the CDC, and are considered as lost social value. In addition, the

PVI values of different acquisitions, which indirectly capture proximity effects, are

additive from a social-return perspective as described in Harding et al. (2009). Given

this framework, we let the value function V
(
bt
)
denote the maximum expected total

PVI that can be achieved from time t until T using the remaining funds b, and note

that the value function V
(
bt
)
satisfies the following dynamic programming recursion

for t < T :

V
(
bt
)
= EC,R

[
max

{
V
(
bt
)
, max

δbCt≥0
C+CδbCt≤b

{[
R + V

(
(b− C − CδbCt)t

)]
p(δbCt)

+
[
V
(
bt
)
− g(C, δbCt)

][
1− p(δbCt)

]}}
]

(4.1)

Moreover, we have V
(
bT
)
= 0 for all fund levels b. In the representation above, the

two arguments in the first maximum operator correspond to no-offer/offer decisions,

while the second maximum operator implies the selection of an overbid rate that would

maximize the overall value. Note that the condition C + CδbCt ≤ b for nonnegative

δbCt in the second maximum operator models the budget constraint and implies that

the value function remains the same if accessible funds are not sufficient to acquire a

property with a given cost. Defining the expectation based on the distributions of C

and R, equation (4.1) can be expressed as:

V
(
bt
)
=

∫ b

C

∫ R̄

R

max

{
V
(
bt
)
, max

δbct≥0
c+cδbct≤b

{[
r + V

(
(b− c− cδbct)t

)]
p(δbct)
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+
[
V
(
bt
)
− g(c, δbct)

][
1− p(δbct)

]}}
f(r, c)drdc (4.2)

It can be observed from the recursion that the optimal policy for a foreclosed property

that becomes available at time t with an accessible fund level of b would be as follows.

The CDC should make an offer on a property with asking price c and property value

impact r using an overbid rate of δ∗bct if c+ cδ∗bct ≤ b and :

[
r + V ∗

(
(b− c− cδ∗bct)t

)]
p(δ∗bct) +

[
V ∗

(
bt
)
− g(c, δ∗bct)

][
1− p(δ∗bct)

]
≥ V ∗

(
bt
)

(4.3)

where V ∗
(
bt
)
denote the optimal value function, while the optimal overbid rate δ∗bct

is formally defined as δ∗bct = argmaxδbct

{[
r + V ∗

(
(b− c− cδbct)t

)]
p(δbct) +

[
V ∗

(
bt
)
−

g(c, δbct)
][
1 − p(δbct)

]}
. Through some algebraic manipulation, condition (4.3) can

be expressed as a PVI threshold policy. More specifically, the CDC should make an

offer on a foreclosed property available for acquisition if accessible funds are sufficient

and the PVI value of the property is greater than a threshold, i.e. if:

r ≥ V ∗
(
bt
)
− V ∗

(
(b− c− cδ∗bct)t

)
+

1− p(δ∗bct)

p(δ∗bct)
g(c, δ∗bct) (4.4)

Hence, to determine the optimal threshold value for fund level b at time t, a priori

calculation of the optimal value functions V ∗
(
bt
)
and overbid rates δ∗bct is needed for

all b ∈ [0, B] and t ∈ [0, T ]. We describe in the following sections how these values

can be determined, and what their implications for CDCs are.

As part of our analysis throughout the rest of the study, we consider two types of

practical decision making situations that the CDCs face: (1) an infinite horizon case

where the accessible acquisition funds do not expire, i.e. funds can be used anytime,

and (2) a finite horizon case where the unused amount of potentially accessible ac-

quisition funds is assumed lost at the end of a fixed planning period such as a fiscal
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year. We study these two cases separately, and describe results about the optimal

value functions and overbid rates for each case.

4.1.3 Optimal Foreclosed Housing Acquisition Policies with No Fund Ex-

piration

A portion of funds potentially accessible by CDCs for foreclosed property acqui-

sitions may not have usage deadlines, such as donations or lines of credit that they

might have through private banks or other lenders. Such resources can be considered

as funds without any expiration, implying that they can be used over an infinite time

horizon. While CDCs would typically try to replace any funds used out of their lines

of credit with funds from other sources, it is reasonable that a CDC, like any other

similar organization, will do planning every six months or a year to determine an

acquisition strategy based on their available lines of credit. In addition, while these

lines of credit might involve cash flows due to property sales or other transactions,

these can be assumed to be not affecting the acquisition decisions as they can be con-

sidered in the next period’s planning due to the time delay in the redevelopment and

sale of acquired properties. In this section, we address optimal acquisition policies

under such conditions, which corresponds to the case with T = ∞. We specifically

describe procedures for calculating optimal value functions, and characterize optimal

policies including overbid rates to be used if an offer decision is made on a foreclosed

property.

Given the stationarity of the probability distributions of foreclosed property ask-

ing prices, PVI measures, and the availability rates, as observed through analysis of

historical data from 2009 to 2012, the value function for the case without fund expi-

ration is independent of time t, and is thus denoted by V (b). Moreover, a continuous

discount rate of α is assumed for this case to reflect the time value of available funds

and property value impacts of acquisitions. Our first result deals with the calculation
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of the optimal value functions. We note that under some very general assumptions,

it is possible to solve for the optimal values of V (b) through a recursive relationship

as follows:

Theorem 1. If accessible funds for foreclosed housing acquisition for a CDC do not

expire, then the optimal expected total PVI for a given fund level b, denoted as V ∗(b),

is the solution of the following equation:

αV ∗(b) =λ

∫ b

C

max
δbc

{∫ R̄

x(δbc)

p(δbc)
(
r −

[
V ∗(b)− V ∗(b− c− cδbc)

+
1− p(δbc)

p(δbc)
g(c, δbc)

])
f(r, c)dr

}
dc (4.5)

where x(δbc) is the PVI threshold for making an offer and is defined as x(δbc) =

V ∗(b)− V ∗(b− c− cδbc) +
1−p(δbc)
p(δbc)

g(c, δbc).

Proof. All proofs are included in Appendix B.2. �

By evaluating the integral in Equation (4.5), the set of corresponding recursive

relationships can be numerically solved to determine the optimal expected total PVI

for each fund level b ∈ [0, B], and thus the optimal overbid rates δ∗bc and the PVI

thresholds x(δ∗bc). For the optimal overbid rate, it is possible to numerically evaluate

the recursion in (4.5) by considering a discrete set of overbid options, and then se-

lecting the rate that results in the maximum expected total PVI. On the other hand,

it is also possible to characterize the optimal overbid rate analytically under certain

conditions. These characterizations are described through Theorem 2 as follows:

Theorem 2. Let K̄ = maxk∈{R,R̄}{E(r|r ≥ k)− k}. In addition, let L(δbc) = Gc
(
1−

p(δbc)−
p′(δbc)
p(δbc)

(1+ δbc)
)
with L̄ = maxδbc∈[0,δ̄c]{L(δbc)} and L = minδbc∈[0,δ̄c]{L(δbc)} for

a property with asking price c and PVI value of r.

If accessible funds for foreclosed housing acquisition for a CDC do not expire,

then the optimal overbid rate is approximately independent of the amount of accessible
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funds, and the following policies are optimal for overbidding on a foreclosed property

for which a CDC will make an offer:

1. If the condition p′(δ̄c)K̄ − L ≤ 0 holds, then the CDC’s offer should be at the

asking price.

2. If the condition L̄ ≤ 0 holds , then the CDC’s offer should be at an overbid level

of δ̄c:

3. If the probability of success for an offer is a convex function of the overbid rate

or if −p′′(δbc)
[
r − R + Gc

(
δbc + 1 − 1−p(δbc)

p(δbc)

)]
≤ 2Gcp′(δbc) for all δbc ∈ [0, δ̄c],

then the CDC’s offer should always be either at the asking price or at overbid

level δ̄c.

An important implication of Theorem 2 is the independence of the optimal overbid

rate from the amount of accessible funds, which suggests that δ∗bc = δ∗c for all b. Hence,

under some basic assumptions discussed in the proof of the theorem, the same overbid

rate is optimal for a property at all fund levels. On the other hand, for the sake of

completeness, we continue to use the subscript b when referring to the overbid rate

throughout the study. The results in Theorem 2 can be used to help determine the

amount to offer for a given property, while at the same time simplifying the solution

of Equation (4.5) as the maximization over δbc will not be needed if any of the first

two conditions listed are satisfied. Even when the two conditions do not hold, but

the condition in item 3 applies, the solution is still simpler due to the conclusion

that δ∗bc ∈ {0, δ̄c} under that case. Moreover, the conclusions can serve as a simple

benchmark for offers made using arbitrary overbid rates. Note that if the conditions

in Theorem 2 are not satisfied, then the optimal overbid rate can be obtained through

enumeration of potential discrete values of δbc, and solving Equation (4.5) separately

for each case.
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An indirect result of the analysis in Theorem 2 involves the characterization of

the relationship between the optimal overbid rate, the PVI thresholds, and the asking

prices of the properties. The following result provides insights about these relation-

ships which has implications about the overbid policy that the CDC should use:

Corollary 1. For any PVI threshold level k, let K = E(r|r ≥ k) − k. The optimal

overbid rate that the CDC should use under no fund expiration for a property with

asking price c has the following properties:

1. The optimal overbid rate that the CDC should use is either 0, δ̄c, or a solution

of the equation p′(δbc)K − L(δbc) = 0 for a PVI threshold level k.

2. The optimal overbid rate is nonincreasing in K.

3. The optimal overbid rate is nondecreasing in c.

Given the dependence of optimal overbid rates and PVI threshold levels, item 1

in Corollary 1 indicates that for any threshold level k the optimal overbid rate can be

obtained by solving the equation p′(δbc)K −L(δbc) = 0. A solution lying in the range

[0, δ̄c] would correspond to the optimal overbid rate. If all solutions are outside the

range, then the optimal overbid rate is one of the boundary values. This result might

also be helpful when an arbitrary PVI threshold is used. More specifically, it may

be the case that the CDC uses a PVI threshold based on previous experience of the

staff or based on existing organizational policies, and the results above would provide

insights about the offer amounts to be made. Item 2 in Corollary 1 describes how the

optimal overbid rate changes as a function of K, which depends on the distribution of

the PVI values. A more direct result is item 3, which indicates that CDCs typically

should use higher overbid rates for higher cost properties. This is likely due to the

overhead costs being higher for those properties. In Figures 4.1(a) and 4.1(b), we

demonstrate as an example how the optimal overbid rates vary as a function of K

and c for a concave increasing function of probability of success in an offer.
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(a) Change in optimal overbid rate as a func-
tion of K
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(b) Change in optimal overbid rate as a func-
tion of the property asking price

Figure 4.1. Demonstration of how optimal overbid rate changes as a function of K
and property asking price for a PVI threshold k, when the probability of success in
an offer is a concave increasing function of overbid rate.

Using the discussion above, it can be shown that for the case with uniformly

distributed returns the optimal overbid policy can be expressed in a more compact

form. We summarize this through the following corollary:

Corollary 2. If the returns in the foreclosed housing acquisition problem are uni-

formly distributed, then the following policies are optimal on the overbid rate for a

property with asking price c under no fund expiration:

1. If the condition p′(δ̄c)(R̄ − R) − 2L ≤ 0 holds, then the CDC’s offer should be

at the asking price.

2. The optimal overbid rate that the CDC should use is either 0, δ̄c, or a solution

of the equation p′(δbc)(R̄− k)− 2L(δbc) = 0 for a PVI threshold level k.

Through further analysis, we also note some qualitative characteristics related to

the optimal acquisition policy under the no fund expiration case. As part of this

analysis we introduce two measures of practical relevance, which we refer to as the

“critical fund level” and “critical time”. The critical fund level is defined as the

specific funding level such that the optimal policy for funds larger than that level is
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to make offers to all available properties that satisfy a minimum return requirement.

Similarly, the critical time is the time period such that the optimal policy after that

time period is to make offers to all available properties satisfying the minimum return

requirement. For the no fund expiration case, the optimal thresholds are constant

over time, so the critical time is either 0 or ∞. Hence, this measure becomes more

relevant when the funds expire at a certain time, which we discuss later. Given these

additional definitions, we summarize some important characteristics for the optimal

foreclosed housing acquisition policy as follows:

Theorem 3. The following conditions always hold for the foreclosed housing acqui-

sition problem with no fund expiration:

1. The larger the amount of accessible funds, the higher the expected total PVI

value to be realized from foreclosed property acquisitions.

2. The higher the availability rate of foreclosed properties, the higher the optimal

PVI thresholds that a CDC should use.

3. The marginal value of accessible funds decreases as the fund amounts get larger,

if optimal PVI thresholds are decreasing in the amount of accessible funds.

4. Let δ̇bc be a solution to the equation p(δbc)
(
1 − p(δbc)

)
− p′(δbc)(1 + δbc) = 0. If

there is a unique solution δ̇bc ∈ [0, δ̄c] or if δ̇bc > δ̄c, then for all δbc ∈ [0, δ̇bc], the

higher the PVI threshold used by the CDC, the higher the overbid rate should

be. For all, δbc ∈ [δ̇bc, δ̄c] or if δ̇bc < 0, the higher the PVI threshold used by the

CDC, the lower the overbid rate should be.

5. If optimal PVI thresholds are increasing in overbid rate, then the higher the

overbid rate used, the higher the critical fund level.

6. The critical fund level and the marginal value of accessible funds are constant

over time.
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The first result is an intuitive conclusion that the higher the amount of accessible

funds, the more value they have in terms of the total PVI that can be achieved from

acquired properties. Similarly, item 2 in Theorem 3 is also somewhat intuitive, as it

indicates that a CDC should be more selective if acquisition options arrive at a higher

rate. The third conclusion is due to the concavity of the total expected PVI value from

acquisitions under the stated condition of being less selective when operating with

larger funding levels. In that case, the marginal value of available funds will be higher

as the remaining amount of accessible funds gets lower. The property described in the

fourth item in Theorem 3 implies that the relationship between PVI thresholds and

overbid rates vary over the range of overbid rates. If a CDC has a policy to overbid

at a rate lower than δ̇bc, then they should use higher overbid rates only when an offer

is made on a property with a larger PVI value. However, if the CDC’s policy is to

offer above δ̇bc, then they can use higher overbid rates for properties with lower PVI

values. As the fifth item, we note that if the CDC uses high overbid rates and high

thresholds, then the critical fund level will get higher as the overbid rate increases.

In other words, usage of higher overbid rates would result in the CDC stopping being

selective earlier. Finally, given that the no fund expiration case assumes an infinite

planning horizon, the optimal threshold policy and thus the critical fund level and

the marginal value of accessible funds are the same at all times.

4.1.4 Optimal Foreclosed Housing Acquisition Policies with Fund Expi-

ration

Another important case for CDCs’ foreclosed housing acquisition process is when

they face deadlines for utilizing the potentially accessible acquisition funds. This is

typically the case when the providers of the funds stipulate that they are used within

a given time frame. For example, the funds that were made available to CDCs by the

federal government as part of the Neighborhood Stabilization Program over the last
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few years required that these funds were used by the end of 2012 Stable Communities

(2012).

Utilizing a similar structure as the infinite horizon case, in this section we char-

acterize the optimal foreclosed housing acquisition policies for CDCs when they have

time-based limitations for using the accessible funds, which we broadly refer to as fore-

closed property acquisition under fund expiration. This introduces a time-dependent

decision structure, where the optimal offer decisions depend on the remaining time

before expiration. We first note through Theorem 4 below that the optimal expected

total PVI at a given time for different remaining fund levels can be found by recur-

sively solving a set of differential equations:

Theorem 4. If accessible funds for foreclosed housing acquisition for a CDC expire

at a finite time T , then the optimal expected total PVI for a given funding level b at

time t, denoted as V ∗
(
bt
)
, is the solution of the following differential equation:

∂V ∗
(
bt
)

∂t
= −αV ∗

(
bt
)
+ λ

∫ b

C

max
δbct

{∫ R̄

x(δbct)

p(δbct)
(
r −

[
V ∗

(
bt
)
− V ∗

(
(b− c− cδbct)t

)

+
1− p(δbct)

p(δbct)
g(c, δbct)

])
f(r, c)dr

}
dc (4.6)

where the PVI threshold x(δbct) is defined as x(δbct) = V ∗
(
bt
)
− V ∗

(
(b− c− cδbct)t

)
+

1−p(δbct)
p(δbct)

g(c, δbct).

Note that in the representation above we slightly abuse the notation, and show

the time dependence of the value function through the subscript t in the budget

notation bt. Our utilization of a discount factor in the fund expiration case is mostly

due to completeness in capturing the time value of available funds over the planning

horizon which might be long enough to justify discounting. Moreover, we note that

the funds with expiration are typically government grants and are not paid back.

Equation (4.6) represents a set of ordinary differential equations which can not be

solved analytically. Thus, these equations need to be solved numerically as a system,
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possibly in a recursive way. On the other hand, a discretization approach is possible

for improved computational efficiency in the numerical analysis. In addition to its

computational implications, the discrete-time based approach also approximates the

actual decision process of CDCs whose acquisition related decisions are periodic. As

part of the discrete time approximation, let τ be the discretization factor such that

the minimum time between two consequent decisions is defined by T/τ . Based on

this representation, equation (4.6) can be approximated by:

V ∗(bt−T/τ ) =(1− α)V ∗
(
bt
)
+
T

τ
λ

∫ b

C

max
δbct

{∫ R̄

x(δbct)

p(δbct)
(
r −

[
V ∗

(
bt
)

− V ∗
(
(b− c− cδbct)t

)
+

1− p(δbct)

p(δbct)
g(c, δbct)

])
f(r, c)dr

}
dc (4.7)

where the solutions converge to the actual optimal value functions as τ → ∞.

While the optimal total PVI for a given fund level at a given time can be calcu-

lated through Theorem 4, the identification of the optimal overbid rates adds to the

complexity of the problem as discussed in Section 4.1.3, as it would typically involve

enumeration over a discrete set of overbid rates. On the other hand, we show through

Theorem 5 below that similar results as in the no fund expiration case apply to the

fund expiration case as well:

Theorem 5. For the foreclosed housing acquisition problem with fund expiration, the

optimal overbid rate is approximately independent of time and the amount of accessible

funds, and thus the optimal policy for overbidding on a foreclosed property for which

a CDC will make an offer is same as the case with no fund expiration.

More specifically, Theorem 5 states that the introduction of a time dimension

would have a negligible impact on the optimal overbid policy, and that the same

results as those described in Theorem 2, Corollary 1 and Corollary 2 apply to the fund

expiration case as well. These properties can help identify the optimal overbid rate for

a CDC or simplify the solution of (4.6). In addition, further practical implications for
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the foreclosed housing acquisition problem with fund expiration can also be derived

on the value functions and threshold levels, which we summarize through Theorem 6

as follows:

Theorem 6. The following conditions always hold for the foreclosed housing acqui-

sition problem with fund expiration:

1. Results 1, 2, 3, 4, and 5 in Theorem 3 apply to the foreclosed housing acquisition

problem with fund expiration.

2. The expected total PVI value of accessible funds decreases over time.

3. The marginal value of accessible funds decreases over time.

4. Optimal PVI thresholds decrease over time.

5. The critical fund level decreases over time.

6. If optimal PVI thresholds are increasing in overbid rate, then the higher the

overbid rate used, the later the critical time.

7. If optimal PVI thresholds are decreasing in the amount of accessible funds, then

the larger the amount of accessible funds, the earlier the critical time.

The first statement in Theorem 6 indicates that some structural characteristics

of the no fund expiration case also apply to the problem with fund expiration, and

thus their interpretations are the same as those described in Section 4.1.3. Items 2

and 3, on the other hand, imply that the value of available funding decreases over

time if not used, and moreover the rate of change is higher as it gets closer to the

fund expiration date. The fourth item is related to the PVI threshold levels and

indicates that a CDC would be better off by gradually being more aggressive, i.e. less

selective, in making offers to foreclosed properties as time progresses towards fund

expiration. Similarly, other results in Theorem 6 help estimate the behavior of the
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optimal policy as well. More specifically, item 5 states that as a CDC becomes less

selective in acquisitions over time, the critical fund level indicating an offer decision

for all available properties above the minimum return requirement also decreases over

time. In item 6, we note that usage of high overbid rates by a CDC would imply

that they should begin making offers to all properties above the minimum return

requirement at a later time than if they were to use lower overbid rates. Finally,

result 7 suggests that for any two different fund levels, it should be expected that,

under the stated condition, the larger funds would imply an earlier switch to making

offers to all available properties above the minimum return requirement.

4.2 Real-Life Implementation and Policy Implications of the

Models in Foreclosed Housing Acquisition

The optimal policies described in Section 4.1 are quite general and address different

types of problem configurations. In this section, we use these general results to identify

policies that apply to the decision framework currently faced by many CDCs. To this

end, we utilize real numerical data as input to our models to provide guidelines for

the foreclosed housing acquisition process of a typical CDC, which is considered to

be reflective of CDCs operating in similar urban neighborhoods.

4.2.1 Description of Data

Data based implementation and analysis of the foreclosed housing acquisition

problem was performed in close coordination with the CDC located in the city of

Boston, Massachusetts. This CDC was also involved in the model building phase of

the study. While there is no comprehensive quantitative information that compares

the operating framework for this CDC to that of other CDCs, there is anecdotal

evidence that the CDC studied can be representative of typical CDC operations in

other major cities (NeighborWorks, 2009; Gass, 2010). This is also supported by the
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(a) Distribution of availability times for acqui-
sition

(b) Distribution of asking prices

Figure 4.2. Distributions of asking price and market entry times of foreclosed prop-
erties in the CDC’s service area.

fact that PVI distributions calculated for a different CDC in an entirely different

area of Boston, Massachusetts reflect similar characteristics as those obtained for the

service area studied in this study Johnson et al. (2013).

The decision making situation faced by this CDC involves managing funds that

they can potentially access for acquiring foreclosed properties in their service area.

Similar to our categorization of the two problem types, these funds differ in their usage

requirements. The acquisition process for the CDC starts with their notification of

a property becoming available for acquisition in their service area. The CDC then

gathers information about the property, specifically with respect to the asking price

and the potential returns to be realized if the property is acquired and redeveloped.

Given such information, the CDC decides whether to work with a funder to make an

offer on the property and how much to offer.

To characterize the actual decision problem parameters, as well as the uncertainty

in property costs and returns, data based on recent historical foreclosed property

availabilities and acquisitions were used. This data was directly obtained from the

records of the CDC that we worked with and is available upon request. Based on

this data, an average of approximately 10 properties were observed to be entering the
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market each month following a Poisson distribution, which corresponds to an average

availability rate of 2.5 properties/week. A histogram showing the distribution of the

time between property availabilities is included in Figure 4.2(a). While this number is

likely to fluctuate based on the conditions of the economy and the housing market, it

reflects a practical quantity for the current state of the economy. On the other hand,

our analysis later in this section involves a sensitivity study around this availability

rate value. In Figure 4.2(b), we show the asking price distribution for the properties

considered in the data set, which implies a triangular distribution with parameters of

120, 250 and 380 thousand dollars.

The distribution of the PVI values for the same data set, as calculated through

the methodology described in Johnson et al. (2013), is shown in Figure 4.3(a). The

best fitting distribution for the PVI values is uniform between 60 and 120 thousand

dollars. Moreover, the PVI values of the properties are found to be independent

of their asking prices as reflected in the scatter plot in Figure 4.3(b), which also

includes a regression line. Hence, we assume independent distributions for asking

prices and the PVI measures. This independence structure is likely because lower

cost properties can have higher impacts on the values of nearby properties, especially

if they are located in dense neighborhoods. Similarly, a higher priced property does

not necessarily imply higher social value from a CDC’s perspective, e.g. in the case

of a property with few proximate properties.

The overhead costs for the CDC for each offer that they make on a property are

calculated to be around 1.5% of the amount offered on the property. As discussed

in the model description, the probability of acquisition after an offer on a property

depends on the overbid rate used for a given asking price. Using data from previous

acquisitions, and also based on consultations with the CDC staff, we define this

probability as p(δbct) = 0.22δbct + 0.37. Note that this probability assumes that the

CDC’s offer is competing only with owner occupants and public entities as part of the
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Figure 4.3. Distribution of PVI values and their dependency on asking prices for
foreclosed properties in the CDC’s service area.

early opportunity to bid for a foreclosed property. The structure of this probability

of success function is also consistent with the discussions and function descriptions

by Holt and Sherman (2000) and Aobdia and Caskey (2012) for similar settings.

Given this framework, the CDC needs to decide on how to utilize the funds that

they can potentially access with and without fund expiration conditions. Since the

grant based funds are prioritized in making the acquisitions, the decisions for the two

sources do not need to be considered together. Based on available information, we

assume a $4 million fund level for both finite and infinite horizon implementations,

but we also analyze the optimal policies for other fund levels.

4.2.2 Implementation and Analysis under No Fund Expiration

Our first implementation and analysis are for the case without fund expiration,

which refers to the usage of resources that do not have certain deadlines. Using

the numerical data provided, we specifically try to develop numerical insights on the

policies that should be used by the CDC.
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Figure 4.4. Optimal expected total PVI for different funding levels and the marginal
value of funds under no fund expiration.

4.2.2.1 Optimal Expected Property Value Impact

For a fund level of $4 million without an expiration deadline, the current expected

PVI to be realized through the foreclosed property acquisitions by the CDC is around

1.9 million dollars. Note that the expected PVI is independent of time due to the funds

not expiring and only being subject to discounting. This value decreases for lower fund

levels as shown in Figure 4.4(a) through the top curve corresponding to an overbid rate

of 0%. It can be observed that the optimal expected value is a nondecreasing concave

function of the remaining amount of funds. While we discuss the optimal overbid rates

and their implications later in this section, as some additional information, Figure

4.4(a) also includes the impact of using different overbid rates on the optimal value

function under the assumption that the same overbid rate is used for all properties.

Although the differences are not that large, the value function can be observed to be

decreasing as the overbid rate is increased.

Clearly, the value of the accessible funds for a CDC, in terms of its potential

PVI based returns, is constant over time given an infinite horizon setting. On the

other hand, a relevant question involves the marginal value of these resources. For
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example, the marginal impact of a reduction in the acquisition funds can play a role

when a CDC faces a decision on whether to use part of their available line of credit for

purposes other than foreclosed property acquisition. As can be seen in Figure 4.4(a),

the marginal return decreases as the fund level is increased. In Figure 4.4(b) we

quantify this change over fund levels, which can be used by CDCs for budgeting

purposes. While each dollar of accessible funds is expected to result in about $0.8

of PVI at a fund level of $0.5 million, this marginal PVI impact reduces to around

$0.3/dollar at the $4 million fund level.

4.2.2.2 Optimal PVI Thresholds for Offer/No-Offer Decisions

A policy implication for the infinite horizon problem is that, assuming a discount

rate and no time limitation for using the accessible funds, the CDC should work with

the funding source and make an offer on all properties that satisfy the minimum PVI

level, which is $60 thousand for the given data. Indeed, this threshold is much lower,

around $20 thousand for a general implementation. This is based on the analysis of

the optimal PVI thresholds as illustrated in Figure 4.5(a) where the lighter dashed
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horizontal line in the plot represents the minimum possible PVI of any acquired

property. Hence, a PVI threshold less than this value implies that all properties in

the market should be made an offer. It can be observed that even at lower funding

levels the optimal policy is not selective, i.e. an offer is made on all properties with

PVI values of at least $30 thousand. Given that the current numerical setup is likely

to be reflective of most urban neighborhoods, specifically with respect to the PVI

distributions as shown through a numerical study, this result might be applicable

to a large number of CDCs. Such a result might be due to the interaction between

property availability rates and the discounting effects. The value of the current funds

will decrease over time based on a standard discount rate, and the CDC might be

better off by acquiring properties early before the present value of the funds decreases.

Moreover, the current average availability rate of 2.5 properties per week, while quite

high historically, is still not significant enough to justify a highly selective policy.

We later describe a sensitivity analysis that shows how increases in availability rates

impact these optimal policies .

We note that in general the marginal change in the PVI thresholds decreases as

a function of the funding level as observed in Figure 4.5(a). In other words, having

access to larger amount of funds implies less selectivity in making offers to foreclosed

properties in the market. In Figure 4.5(a), we also illustrate that the optimal PVI

threshold is a nonincreasing convex function of the remaining funds, and that the

threshold value is higher if a high overbid rate were to be used for the offers. In

addition, as also mentioned in Section 4.1.3, a critical fund level can be identified

such that at that funding level the threshold drops below the minimum realizable

PVI values. Hence, for any remaining fund level that is greater than the critical fund

level, the CDC would make offers to all available properties satisfying the minimum

PVI level of $60 thousand, while a more selective policy can be used for fund levels

that are less than the critical fund level based on the optimal PVI thresholds. On
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the other hand, while not shown explicitly, we observe through Figure 4.5(a) that

the critical fund level for this numerical setup is very small, i.e. much less than $0.5

million.

4.2.2.3 Optimal Overbid Rates

The optimal overbid rate for the types of CDCs studied is at the minimum possible

level for all properties, i.e. the CDC should not offer more than the asking price for

any foreclosed property. This result implies a different policy than what is used in

practice, and is a result of the characteristics of the current data. We show in Theorem

2 the ranges of cases where the optimal overbid rate is not zero. In Figure 4.5(b), we

illustrate the changes in the optimal expected PVI as a function of the overbid rate for

different remaining amounts of accessible funds. These representations visually show

the optimal overbid rate to be zero. On the other hand, the differences in value and

threshold levels are not huge for different overbid rates. In general, it can be observed

that the optimal expected PVI is a decreasing function of the overbid rate, while the

threshold is increasing in the overbid rate. This result is consistent with both our

analytical findings and the expert views from the CDC staff. One potential reason

for this conclusion is that the overhead costs are not that significant when compared

with other costs such as the losses due to discounting, while at the same time there

exist a relatively large number of foreclosures in the CDC’s service area. The result

holds even when the overhead costs are increased to higher levels than 1.5% of the

asking price. Therefore, even if the CDC’s offer is not successful, it is likely that

there will be other properties with comparable PVI values that will become available.

This also implies that the shape of the PVI distribution might have an impact on

the overbid rate decisions, and thus our finding may be a result of the distribution

observed in practice. We also note that the optimal overbid rate values can serve as

a benchmark such that they could be the maximum to be accepted in a negotiation.
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4.2.3 Implementation and Analysis under Fund Expiration

In this section we analyze the optimal policies for the case where any accessible

but unused funds have no value after a finite expiration date. As noted previously,

this is typically the case for grants that the CDC can receive for foreclosed housing

acquisitions, which may have stipulations such that they need to be expended within

a certain time frame. Our analysis follows a similar structure as in the infinite horizon

case.

4.2.3.1 Optimal Expected Property Value Impact

For an accessible funding level of $4 million to be used within a year, the optimal

expected total PVI due to foreclosed property acquisitions by the CDC is approxi-

mately $1.8 million under the optimal policy. As observed in Figure 4.6(a), this value

decreases over time if the funds remain unused. For higher fund levels the rate of

reduction in value when accessible funds are not used is mostly linear at an average

rate of $7,000 per week until around the last three months of the year. After that

point, the expected total PVI decreases sharply. Hence, the CDC should try to uti-

lize their accessible funds earlier rather than later. Moreover, the marginal value of

accessible funds does not significantly diminish for higher fund levels, or rather the

rate of decrease is very slow, especially in the first three quarters of the planning

year. Hence, higher levels of accessible funds are likely to result in proportionally

higher total PVI. We quantify these observations in Figure 4.6(b) by displaying the

change in marginal PVI values over fund levels and time. Per dollar PVI returns

of potentially accessible acquisition funds decrease from $0.6 at a fund level of $0.5

million to $0.4 at a fund level of $4 million. This difference is less than that of the

case without fund expiration, where both the marginal values and their rate of change

over fund levels are higher. It can also be observed that the behavior of the marginal
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values at different fund levels over time is similar with a slow rate of decrease until

the last three months of the planning period, followed by a sharp decline afterwards.

4.2.3.2 Optimal PVI Thresholds for Offer/No-Offer Decisions

For low annual accessible fund levels, i.e. less than around $1.5 million, the

CDC should employ a selective strategy based on the optimal PVI thresholds shown

in Figure 4.7(a). For example, for accessible funds of around $1 million, initially

offers should be made only to those properties with a PVI value greater than $65

thousand. In addition, we note that the marginal change in the PVI thresholds

decreases as a function of the amount of accessible funds. In other words, selectivity

increases significantly at lower fund levels. On the other hand, at higher levels of

accessible funds and for the given foreclosure rates, the optimal policy for the CDC

is to make offers to all available foreclosed properties above the minimum PVI level

of $60 thousand when a finite planning horizon of one year is assumed. As can be

seen in Figure 4.7(a), for these funding levels the optimal PVI threshold is always

below the minimum PVI level. This is another demonstration of the impact of the

available funds in the acquisition decisions, where larger funds enable more aggressive

acquisition policies.

We also perform a sensitivity analysis over different availability rates, and observe

how the optimal PVI thresholds change as the availability rate increases. The case

where availability rates decrease is not so interesting, as it would imply even lower

threshold levels which will be further less than the minimum possible PVI level. In

Figure 4.7(b) we display the optimal PVI threshold graph for an average availability

rate of 5 properties per week, which represents foreclosure rates twice the current

levels. In this case, a highly selective policy is optimal at all fund levels until around

the last quarter of the planning period. This indicates that under the given numerical

setting CDCs should become highly selective in acquisitions only if foreclosure rates
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Figure 4.7. The change in optimal PVI thresholds over time for different availability
rates.
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become worse than the current levels. Related to this analysis, Figure 4.8 contains in-

formation about the critical time and critical fund level levels for different availability

rates for an initial funding level of $4 million. This diagram can be used to identify the

critical fund level for a given time or the critical time for a given budget for the given

availability rate. For example, if the average availability rate is 5 properties/week,

then the CDC should not be as selective and make offers to all properties with PVI

values above $60 thousand when the current time and available budget combination

falls in the region above the dashed line corresponding to 5 properties/week. As an-

other example, the CDC should start making offers to all such properties in the 20th

week of a budget period if the potentially accessible funds at that time are greater

than $4 million, while this critical level is $1 million for an availability rate of 2 prop-

erties/week. Overall, based on the slopes of the lines in Figure 4.2.3.1, we note that

critical fund level increases significantly at high availability rates. Similarly, critical

time for a given fund level decreases with a higher rate for high availability rates.
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4.2.3.3 Optimal Overbid Rates

We conclude that, contrary to the current practice, for the given numerical setting

the CDC does not need to overbid on foreclosed properties and should typically offer

the asking price. This result is similar to the infinite horizon case, and is again

possibly due to relatively lower overhead costs and the variance of the PVI values of

properties. Figure 4.9 shows the changes in optimal expected PVI and PVI thresholds

as a function of overbid rates for different amounts of remaining funds. The optimal

expected total value can be seen to be a nonincreasing, almost linear function of

overbid rate. On the other hand, the PVI threshold is a nondecreasing function of

overbid rate, implying that selectivity increases for higher overbid rates.

4.2.4 Value of Optimal Policies

In this section we describe a comparative study aimed at demonstrating the value

of the optimal policies with respect to current practice and other simplistic heuristic

procedures. The analysis is based on historical bidding and acquisition data obtained

from the CDC that has been collaborated with. This data consists of information on a

set of properties which were considered for potential acquisition and an offer/no offer

decision was made. In Table 4.1 we show part of this information, which includes the

asking price and the estimated PVI value for each property, whether an offer was made

on the property and the overbid rate used. Current practices used by the CDC when

considering an offer decision do not involve a systematic structure, and are mostly

based on qualitative and subjective expert opinions. An important observation is that

the CDC is selective in making offers, and almost always overbids on the properties

for which an offer decision is reached. Contrary to this implementation, the optimal

policy suggests that an offer decision should be made on all candidate properties,

and that there is no need for overbidding. For our comparative study, we assume

an accessible funding level of $1 million and calculate the expected total discounted
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Figure 4.9. Optimal expected PVI values and PVI thresholds as a function of
overbid rate for different funding levels under fund expiration.
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ID Asking Price Estimated PVI Offer Made? Overbid Rate Outcome

1 $164,500 $85,401 Yes 4.6% Lost
2 $170,360 $91,896 Yes 5.6% Acquired
3 $201,250 $75,628 Yes 4.5% Lost
4 $205,400 $103,884 Yes 9.6% Lost
5 $221,100 $88,122 No - -
6 $226,700 $112,285 No - -
7 $227,800 $104,507 No - -
8 $212,100 $85,767 No - -
9 $214,000 $85,513 Yes 5.2% Acquired
10 $190,000 $105,989 Yes 0% Acquired
11 $142,000 $100,850 Yes 7.2% Lost
12 $259,700 $122,034 No - -
13 $259,500 $106,138 No - -
14 $296,500 $108,519 Yes 3.2% Acquired
15 $338,200 $92,093 Yes 3.5% Lost
16 $226,800 $64,390 No - -
17 $125,000 $75,620 No -
18 $150,000 $88,765 Yes 6.7% Lost
19 $184,900 $93,487 Yes 5.4% Lost

Table 4.1. Summary information on a set of properties considered for potential
acquisition by the CDC.

PVI that would have been achieved if the optimal policy were implemented on the

properties in the data set. This value is then compared with the total discounted PVI

achieved through the actual offer and acquisition decisions. Similarly, we test the

efficiency of two heuristic selection criteria by calculating the corresponding expected

total PVI values if they were to be implemented for the sample data set. The two

heuristics have a somewhat similar setup. In the first heuristic, an offer decision is

reached if the standardized marginal return of a given property is greater than 0.5,

while the offer price is selected as the asking price. In the second heuristic, offer/no-

offer decisions are made similarly, but the overbid rate used is assumed to be the

average overbid rate in current practice, i.e. 5%. In Table 4.2 we show the differences

in expected total discounted PVI values based on multiple simulated bid outcomes

for the four cases, as well as the average time it takes to use the accessible funds of

$1 million for each case.
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Expected Total % Difference Fund Usage
Discounted PVI from Implemented Time (months)

Implemented Policy $380,159 - 2.5
Optimal Policy $445,727 17.2% 1

Heuristic-1 Policy $415,478 9.3% 5
Heuristic-2 Policy $399,886 5.2% 4

Table 4.2. Comparison of different policies based on historical property availability
data.

Based on the results of this comparative analysis, it can be observed that the op-

timal policy improves the expected total PVI of a funding level of $1 million by about

17%, when compared with the PVI levels realized from the historically implemented

offer/no-offer decisions. The superiority of the optimal policy is also visible over the

heuristic policies that were based on marginal returns of properties. Similarly, it can

be noted through a comparison of the two heuristics that overbidding still does not

add value when it is used as part of a less aggressive strategy such as the marginal

return based heuristic evaluated. Overall, we observe that a systematic approach

to acquisition decisions of a CDC through the simple optimal policy results is likely

to be of value in terms of the societal response to the foreclosure problem through

property value impact reduction.

4.3 Conclusions

In this chapter we developed, implemented and evaluated a dynamic and stochas-

tic decision model that aims to assist community-based organizations to choose fore-

closed properties for potential acquisition in the service of community stabilization

and revitalization, specifically in response to the increase in foreclosures due to eco-

nomic decline. We considered two practical planning situations based on whether the

potentially accessible funds need to be used by a certain deadline or not. For both

cases, we derived analytical results for calculating optimal return thresholds that a
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CDC can use to determine which properties they should work with their funders on

and make an offer. We also determined policies for overbidding on a property given

that probability of success for an offer depends on the amount offered on that prop-

erty. The policies were implemented in a numerical setting based on operational data

from a CDC, which is considered to be reflective of the operating conditions of many

other CDCs in major cities. General policy guidelines have been suggested based on

this numerical study, where it is estimated that a potential increase of around 17%

can be achieved in expected total PVI through optimal policy implementations, when

compared with historical acquisition data.

We conclude that CDCs should be more selective in making offers on foreclosed

properties if they operate with lower funding levels accessible for acquisition. If the

funds will expire at the end of the planning period, then they should initially make

offers on properties with higher expected returns. Increased selectivity is also optimal

if foreclosed property availability is higher. On the other hand, for the current data,

which is expected to be reflective of conditions in urban neighborhoods, we conclude

that it is optimal to make offers on all properties with property value impacts greater

than the minimum of $60 thousand, when the accessible funds are greater than about

$1.5 million. Moreover, the optimal policy is always to make offers at the asking price

and not to overbid. These results change and return thresholds become more active,

only when availability rates reach almost twice the current high levels, or when the

PVI values of potential acquisitions are very low, which typically is the case in low

population density neighborhoods. Hence, unless the foreclosure crisis is significantly

worsened, the proposed guidelines can be expected to be valid for urban areas in major

cities. We also find that cost of making an offer on a property has a negligible impact

on the optimal policy, and CDCs should continue with a given optimal strategy even

if the overhead costs might vary from initial levels. In general, most policy results

are similar for the cases with and without fund expiration, especially before the last
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several periods of the finite horizon case. Given the expiration of the funds, the

acquisition policies get aggressive in using the remaining funds towards the end of

the planning horizon.

Overall, the presented models and guidelines can potentially aid CDCs and other

similar organizations in making investment decisions with social returns, as in fore-

closed housing acquisition and redevelopment. Given the absence of any such opti-

mization based analysis tool for this type of nonprofit decision making, our results

can help in improving the efficiency and effectiveness of the decisions by these non-

profit organizations, thus helping improve the value to the society. We believe that

the presented research contributes to nonprofit operations management literature by

studying a new and important decision problem with many implications for a sus-

tainable economy and society.
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CHAPTER 5

TEAM-BASED RESOURCE ALLOCATION IN ROBOTIC
SURGERY

Consider a hospital making surgical team configuration decisions to maximize op-

erating room efficiency and effectiveness in advance of a planning horizon for robotic

surgical operations. It is assumed that the team allocation decisions will be made

at the beginning of the planning horizon and performance information on the teams

will become available over the planning periods as teams work together on different

surgeries. Future team allocation decisions will be made based on this realized infor-

mation, as well as probabilistic information on performance values further into the

future, as compatibility of team members become more clear.

A more specific representation of this general decision process is depicted in Fig-

ure 5.1, which can be described as follows. The decision maker, i.e. the scheduling

office, decides on possible multiple team configurations for a given period by consider-

ing potential individual and dependent performances of each team member according

to their experiences. Subsequently, the assigned surgeries are performed and inde-

pendent/dependent performances of each team member become known. Once this

Decision 

Timeline

Decide team allocationDecide team allocation

Epoch I Epoch II

Learn performance 

values of each team 

member

Learn performance 

values of each team

Figure 5.1. General decision process for robotic surgery team allocation problem
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information is available, the new team allocation decisions are made by considering

realized performance measures. The process can continue for multiple periods where

team reallocations can take place based on any information that becomes available.

In many cases, these assignments could take place every 1-3 months.

An important process in modeling this decision framework involves the defini-

tions of team performance, and identification of mappings between team member

experiences and performances. We first describe this input generation process in the

following section, and then introduce our stochastic programming model which we

use to determine optimal team configurations under performance uncertainty.

5.1 Modeling and Analysis of Team Performance Functions

Using Operational Data

In this section, we analyze available data and obtain an input to our stochastic

optimization model to identify policies that apply to the decision framework currently

faced by many hospitals in determining surgery teams.

Data based implementation and analysis of robotic surgery team allocation prob-

lem was performed in close coordination with a hospital located in Massachusetts.

Hospital staff were also involved in the model building phase of the study. Our data

focused on robotic sacrocolpopexy operations, i.e. urologic and pelvic surgeries. The

available information spanned the period between March 2008 and April 2012, con-

sisting of a sample of approximately 400 surgeries. This data involves confidential

patient information, and is not publicly available.

We perform some statistical data analyses to study the characteristics of different

attributes within the decision framework, and to obtain experience and performance

metrics for use in our stochastic model. For analysis purposes, we apply factor analy-

sis, regression analysis and one way analysis of variance (ANOVA), which we describe

in detail in the following subsections.
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5.1.1 Factor Analysis

We use factor analysis to develop a more detailed description of the role of the

relevant robotic surgery procedures for use in model building. More specifically, factor

analysis is used to group numerous factors in robotic surgery performance into a few

critical factors that explain most of the variability in the data by taking into account

the parameter relationships.

For this analysis, we filtered our data to obtain standardized robotic sacrocolpopexy

instances with similar characteristics. We included patient information and surgery

team member experiences as variables into the factor analysis model, while redun-

dant measurements and dimensions that were deemed irrelevant to the analysis (i.e.

race, length of stay, etc.) were eliminated. The patient characteristics considered in

the analysis are patient’s age, body mass index (BMI), menopausal status, gravida

(the number of times a woman has been pregnant), pathology result, and measures

related to the severeness of the patient’s condition. This filtered database includes

150 patient records, each containing 10 variables or factors. Once these variables were

selected, factor analysis using varimax rotation was performed which allows for an

easier interpretation (McLain, 2010). A varimax rotation is a change of coordinates

that maximizes the sum of the variances of the squared loadings. Thus, all the co-

efficients will be either large or near zero, with few intermediate values. The goal

is to associate each variable with at most one factor that had the highest weighted

value. The factor analysis results are summarized in Table 5.1. In this table, the

components with eigenvalue values greater than 1 are shown in bold and accounted

as one factor. It can be observed that there would be a small benefit in adding more

factors and that four factors explain around 60 percent of the total variance for the

surgery data. These four factors are then used to form a factor loading matrix.

Table 5.2 shows this factor loading matrix, which is a varimax rotated matrix

of variables and factors that shows the amount of influence a variable has on each
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Initial Eigenvalues
Total % of Variance Cumulative %

1 2.903 22.858 22.858
2 2.118 16.677 39.535
3 1.396 10.992 50.528
4 1.146 9.024 59.551
5 0.947 7.457 67.008
6 0.899 7.079 74.087
7 0.857 6.748 80.835
8 0.741 5.835 86.669
9 0.653 5.142 91.811
10 0.496 3.906 95.717
11 0.338 2.661 98.378
12 0.206 1.622 100

Table 5.1. Factor analysis table showing all the components included.

Component
1 2 3 4

Surgeon Experience -0.794 0.007 -0.204 -0.026
Anaesthetist Experience -0.493 0.055 -0.037 0.123
ST Experience -0.472 0.236 -0.189 0.079
CN Experience -0.748 0.016 -0.208 -0.093
PA Experience -0.482 -0.275 0.197 -0.462
Age of Patient 0.004 0.901 0.104 -0.031
BMI -0.002 -0.24 -0.111 0.685
Menopausal Status 0.076 0.867 0.088 -0.129
Gravida 0.266 0.206 0.201 0.64
Pathology Report Result 0.179 -0.345 -0.018 -0.135
Severity Measure-1 -0.004 0.049 0.904 -0.026
Severity Measure-2 0.074 0.134 0.846 0.008

Table 5.2. Rotated component matrix.
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factor. The first factor explains about 23% of total variance and there are 5 variables

in factor one, corresponding to the experience levels of the surgeon, PA, ST, CN, and

the nurse anaesthetist. Since all the variables in this factor are related to the surgery

team experience, factor one is called the experience factor. Based on this, it can be

further concluded that experience of each team member has crucial importance in

robotic surgery. Factor two consisted of 3 variables related to patient’s health status:

age of patient, menopausal status, pathology report result. This factor accounts for

approximately 17% of total variance. The severeness measure variables are grouped

in the third factor where they explain 11% of total variability. Finally, the last factor

is composed of two variables, namely BMI and gravida, which are related to the

demographic information about the patient. Overall, there are four main factors

which have significant influence on the surgery and it is sufficient to consider these

four factors instead of all variables. We also highlight again that the experience factor

plays an important role in robotic surgery based on our analysis.

After reducing the dimension of categories, regression analysis is then used to

extrapolate the data onto the remaining variables to predict total operating time in

the following subsection.

5.1.2 Regression Analysis

Using the results that we obtained from the factor analysis study, we perform

a multiple nonlinear regression analysis to develop a model for predicting robotic

surgery operating room time based on each team member’s experience levels and

some primary patient characteristics. In order to obtain better predictions, we split

the total operating room time in three categories: preparation time (phase 1), surgery

time (phase 2), and patient awakening/out time (phase 3). In phase 1, every team

member has a role except the scrub tech, while all team members without excep-

tion are involved in phase 2. For patient awakening/out time, the circulating nurse
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and the nurse anesthetist are the active participants. Using this setup, we obtain

the regression equation (5.1) to predict the total operating room time t based on

identified factors. We include in our regression model the patient age a, the mea-

sure of severeness m, and the experience of each team member, denoted by ei for

i = Doc, PA, ST,AN , and CN . Note that Doc refers to the surgeon, while AN

refers to the nurse anaesthetist.

t = −.15(a)− 2.10(m)− 0.05(eCN)
2 − .14(eAN)

2 + 0.03(ePA)
2 − 0.02(eDoc)

2

+ 22.30(eAN) ln (eAN) + 10.99(eCN) ln (eCN ) + 9.40(eDoc) ln (eDoc)

− 8.33(ePA) ln (ePA) + 140.27 ln (eCN)− 51.71(eCN)− 166.98 ln (ePA) + 41.62(ePA)

− 102.22(eAN) + 343.26 ln (eAN)− 50.99(eDoc) + 239.11 ln (eDoc) + 71600.6

+ 1.92(eST )
2 − 753.31(eST ) ln (eST ) + 4191.03(eST )− 35393.8 ln (eST ) (5.1)

In order to assess the validity of our regression model we perform cross validation,

which is an evaluation method that is typically better than simply looking at the

residuals. To this end, we split our data into two sets called training and testing sets.

We perform the analysis on the training set, and validate the analysis on the testing

set. We find that there is no significant difference between training and testing data

sets, implying a validation of our model.

Using the regression analysis results, we obtain the “optimal” experience level for

each team member that would minimize the total operation time assuming indepen-

dence between individual experiences and joint experiences of team members. To

find this optimal level, we calculate the first order derivative of the regression func-

tion with respect to each team member’s experience level, again by assuming all the

other parameters as constant. We further validate our result by comparing it with

those obtained by single regression models for each parameter. This is achieved by

building a nonlinear regression model for each experience level to predict operating
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(a) Operating room time over doctor expe-
rience.
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(b) Operating room time over scrub techni-
cian experience.

Figure 5.2. Operating room time as a function of team member experiences.

Doctor PA Anesthetist ST CN

Exp. Per. Exp. Per. Exp. Per. Exp. Per. Exp. Per.
Low 13 0.295 3 0.23 10 0.217 52 0.788 5 0.089

Medium 24 0.545 7 0.538 24 0.522 59 0.894 34 0.607
High 44 1 13 1 46 1 66 1 56 1

Table 5.3. Categorization of experience and independent performance levels of each
team member in robotic surgery based on number of surgeries performed.

room time, and then by comparing our findings of full and single regression models

for each experience level separately. We also categorize the experience levels for each

team member as being low, medium, or high, according to the 33rd, 66th percentiles

and optimum levels of experience data. These experience levels are summarized in

Table 5.3 where “high” refers to the optimum experience level. We note that we use

the single regression model function to find optimum experience level for doctor since

it provides a better prediction based on our interactions with hospital.

In Figure 5.2 we provide sample graphs for operating room time as a function of

experiences of the surgeon (doctor) and scrub technician. These graphs can also be

used to develop a single regression model for each team member separately. We use

this single regression model to validate the optimal experience levels that we obtained

from the full regression model. The optimal value is expected to be around 50 for the

surgeon, while this value is expected to be between 55-65 for the scrub technician.
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By using these experience levels we calculate individual standardized performance

measures for each team member as summarized in Table 5.3 by dividing the corre-

sponding experience level by the optimum level. Moreover, we calculate dependent

performance measures where we assume that performance of a team member might

be effected from other team members’ performances. To calculate dependent perfor-

mance values we use our predicted regression function and vary the given experience

levels by keeping the others as constant. For example, to calculate the dependent

performance value when the doctor and the PA are both with low experience lev-

els, we plug in low experience values of doctor and PA, shown in Table 5.3, into

equation 5.1 and keep other experience values at their optimum levels. We note that

in our study we only consider dual dependency, as higher degree dependencies have

much less implications and are also harder to quantify based on existing samples of

data.

In our joint performance analysis we find that the anesthetist has the lowest

impact on robotic surgery performance compared to other team members. We also

note that the scrub technician has a key role in robotic surgery, specifically as the

low performance of a scrub tech has a significant affect on the team performance. As

expected, the roles of the surgeon and the PA are also very significant.

5.1.3 Analysis of Variance (ANOVA)

In this subsection we use analysis of variance to evaluate the differences in op-

erating room times as a function of various parameters for practical implications.

Since we analyze variability across one factor categorically, we implement a one-way

ANOVA analysis.

We first analyze the effect of the time of the surgery on total operating time.

Based on our interactions with the hospital staff, it was hypothesized that surgeries

that are held in afternoon typically take longer, when compared to morning surgeries,
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ANOVA

Operation Starting Time

Sum of Squares df Mean Square F Sig.
Between Groups 11403.549 1 11403.549 4.262 .040
Within Groups 904322.507 338 2675.510

Total 915726.056 339

Table 5.4. ANOVA results for surgery starting time.

Multiple Comparisons ANOVA

Dependent Variable:Operating Room Time Tukey HSD

Proc Type Mean Difference Std. Error Sig. 95% Confidence Interval
Lower Bound Upper Bound

1.00 2.00 54.535* 8.779 .000 33.87 75.20
3.00 53.304* 8.705 .000 32.81 73.80

2.00 1.00 -54.535* 8.779 .000 -75.20 -33.87
3.00 -1.230 5.676 .974 -14.59 12.13

3.00 1.00 -53.304* 8.705 .000 -73.80 -32.81
2.00 1.230 5.676 .974 -12.13 14.59

*. The mean difference is significant at the 0.05 level.

Table 5.5. ANOVA results for different types of surgeries.

as a shift change occurs in the afternoon. So we divide our data into two groups,

e.g. surgeries starting before 11am and surgeries starting after 11am. The ANOVA

results are shown in Table 5.4, which validate the hypothesis that there is significant

difference between the morning and afternoon surgeries, based on the F-test results.

As a second analysis, we compare different types of surgeries with respect to

operating room time and provide the ANOVA results in Table 5.5. In this table,

surgery types 1, 2 and 3 refer to surgery types robotic supracervical hysterectomy

with sacrocolpopexy, total robotic hysterectomy with sacrocolpopexy and robotic

sacrocolpopexy, respectively. Based on these results, it is concluded that surgery

types 1 and 2, as well as 1 and 3 have significant differences between each other in

terms of operating room time. However, no significant difference can be observed

between surgery types 2 and 3.

We also analyze the operating room time across the number of scrub technicians

attending the surgery to see whether taking a break during the surgery would effect
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Multiple Comparisons

Dependent Variable: Operating Room Time Tukey HSD

Number of STs Attended Mean Difference Std. Error Sig. 95% Confidence Interval
Lower Bound Upper Bound

1.00 2.00 -4.529 6.014 .732 -18.69 9.63
3.00 .290 11.615 1.000 -27.06 27.64

2.00 1.00 4.529 6.014 .732 -9.63 18.69
3.00 4.819 11.743 .911 -22.83 32.47

3.00 1.00 -.290 11.615 1.000 -27.64 27.06
2.00 -4.819 11.743 .911 -32.47 22.83

Table 5.6. ANOVA results for different number of STs attended

the operating time, since multiple scrub technicians may exchange roles during the

surgery to take breaks. The results are represented in Table 5.6. It can be concluded

that taking breaks do not have a significant effect on operating times because no

significant difference could be observed between surgeries with a higher number of

scrub techs attending the surgery.

5.1.4 Stochastic Characterization of the Performances

We include stochasticity into our model through a representation of the uncer-

tainty in the realized performance levels for each team member and experience level

combination. To this end, we define exogenous random performance variables and

associate them with a probability distribution based on analysis of existing data.

Let ǫ be a vector of random variables corresponding to performances of each team

member with different experience levels. The components of this vector are denoted

by ǫij , where i refers to the team member, and j refers to the experience level of the

team member. We assume two possible realizations for each random parameter, e.g.

low ǫlowij , and high ǫhighij . In order to quantify these realizations, we first calculate the

difference between the highest and lowest possible performance values for each type

of performance measure. We then divide it by 6 by assuming that lowest and highest

values are 6 standard deviations away from the average. To calculate ǫlowij and ǫhighij , we

add and subtract a single standard deviation from the observed performance levels,
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respectively. The same procedure is used for dependent performance measures as well,

where the notation in this case involves elowiji′j′ and e
high
iji′j′, where i and i

′ correspond to

two different team members, while j and j′ are their respective experience levels.

The probability distributions for these realizations are determined through the

analysis of historical data. For each team member with a given experience level, we

calculated the likelihood of having low or high performance based on the frequency

of the observations. For example, an experienced doctor is assumed to perform well

if the total operating room time is lower than the overall average time, while it would

imply a low performance if the observed time is higher than the average time. Looking

at the frequency of historical occurrences of such cases, a discrete probability can be

assigned for each outcome.

5.2 Stochastic Programming Model

In this section we develop a two stage stochastic programming approach and uti-

lize it to determine optimal team configurations for robotic surgery, based on different

levels of experience that each team member can have. Assume that there are K cat-

egories of team members that need to be present in the surgery, e.g. surgeon, scrub

tech, etc., and each category has J different experience levels, e.g. low, medium, and

high. It is further assumed that, during the given period it is required to set up a |M|

teams for surgical operations, where M is the set of all teams. Since the performance

of team members are uncertain and become known after a set of surgeries is com-

pleted, the problem is stochastic and analyzed for different realizations ψ ∈ Ψ, which

represent scenarios with corresponding probabilities πψ. Each scenario corresponds

to one possible combination of performance outcomes over all team members.

Given this setting, we first define a binary variable xjψskm such that it is 1 if a

member in group k ∈ K at performance level of j ∈ J is assigned to be in team

m ∈ M at stage s = 1, 2 in scenario ψ, and 0 otherwise. The individual performance
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value of each member in group k at level j in period s is represented by pjsk while the

dependent performance of a member in group k at level j with member in group n

at level l for scenario ψ in period s is represented by parameter ρjlψskn. Another binary

variable zjlψsknm is also defined such that it is equal to 1 if both the member of group k

at level j and group n level l is assigned to team m in time period s under scenario

ψ. We first summarize the notation used in the model as follows:

Variables Used in the Model

xjψskm : Binary variable such that it is 1 if a team member in group k ∈ K at

performance level of j ∈ J is assigned to be in team m ∈ M at stage

s = 1, 2 in scenario ψ ∈ Ψ, and 0 otherwise.

zjlψsknm : Binary variable such that it is equal to 1 if both member of group k ∈ K

at level j ∈ J and group n ∈ K level l ∈ J is assigned to team m ∈ M

in time period s ∈ S under scenario ψ ∈ Ψ , and 0 otherwise.

cjψkm : Auxiliary variable used to define team change cost in the second period

Parameters Used in the Model

pjψsk : The individual performance value of each member in group k ∈ K

at level j ∈ J in period s ∈ S

ρjlψskn : Dependent performance of a member in group k ∈ K at level j ∈ J with

member in group n ∈ K at level l ∈ J for scenario ψ ∈ Ψ in period s ∈ S

πψ : Probability value of scenario ψ ∈ Ψ

λjψkm : First lagrangian multiplier for the first set of nonanticipativity constraints

µjlψknm : Second lagrangian multiplier for the second set of nonanticipativity
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constraints

Using these variable definitions, the two stage stochastic programming formulation

is as follows:

F(x, z,Ψ) = max min
m∈M

{
Eψ

[∑

s∈S

∑

k∈K

∑

n∈N

∑

j∈J

∑

l∈L

(
pjψskx

jψ
skm − |xjψ1km − xjψ2km|

)

5

+
ρjlψsknz

jlψ
sknm

10

]}
(5.2)

s.t

zjlψsknm ≤ xjψskm ∀k ∈ K ∀n ∈ K − k ∀j ∈ J ∀m ∈ M ∀s ∈ S ∀l ∈ J − j

∀ψ ∈ Ψ− ψ′ (5.3)

zjlψsknm ≤ xjψsnm ∀k ∈ K ∀n ∈ K − k ∀j ∈ J ∀m ∈ M ∀s ∈ S ∀l ∈ J − j

∀ψ ∈ Ψ− ψ′ (5.4)

∑

m∈M

xjψskm = 1 ∀k ∈ K ∀j ∈ J ∀s ∈ S ∀l ∈ J − j ∀ψ ∈ Ψ (5.5)

∑

j∈J

xjψskm = 1 ∀k ∈ K ∀m ∈ M ∀s ∈ S ∀l ∈ J − j ∀ψ ∈ Ψ (5.6)

∑

k∈K

∑

j∈J

xjψskm = 5 ∀m ∈ M ∀s ∈ S ∀ψ ∈ Ψ (5.7)

xjψ1km = xjψ
′

1km ∀k ∈ K ∀n ∈ K − k ∀j ∈ J ∀m ∈ M ∀s ∈ S ∀l ∈ J − j

∀ψ ∈ Ψ− ψ′ (5.8)

zjlψ1knm = zjlψ
′

1knm ∀k ∈ K ∀n ∈ K − k ∀j ∈ J ∀m ∈ M ∀s ∈ S ∀l ∈ J − j

∀ψ ∈ Ψ− ψ′ (5.9)

xjψskm, z
jlψ
sknm ∈ {0, 1} ∀k ∈ K ∀n ∈ K − k ∀j ∈ J ∀m ∈ M ∀s ∈ S ∀l ∈ J − j

∀ψ ∈ Ψ (5.10)

where F(x, z,Ψ) is a scalar value and represents value of objective function. Equa-

tion (5.2) refers to the objective function which maximizes the minimum expected
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total performance value of team configuration decisions at all stages, which includes

a penalty for team changes in the second period. More specifically, individual and

dependent performance values in each period are summed, and then a penalty cost

for team changes in the second period is included into the objective function. We

divide performance values by 5 and 10, since there are 5 individual and 10 dependent

performance values to be summed up for each team configuration. Note that the non-

linearity due the absolute value term at the objective function can be linearized by

replacing the term with cjψkm and adding the following constraints in the formulation:

cjψkm ≤ xjψ1km − xjψ2km (5.11)

cjψkm ≤ −xjψ1km + xjψ2km (5.12)

where cjψkm refers to a team change cost for the second period.

Constraint (5.3) and (5.4) relate zsjlψknm and xjψskm variables and linearize a nonlinear

constraint structure which is originally stated as zsjlψknm ≤ xjψskmx
jψ
snm. More specifically,

zsjlψknm = 1 if both xjψskm and xjψsnm are equal to 1, and zsjlψknm = 0 if any or both of them

are equal to 0. Constraint (5.5) ensures that each team member at each performance

level should be assigned to one team exactly while constraint (5.6) is used to assign

exactly one member from each group to each surgical team. The total number of

team members is at most |K| and this is defined by constraint (5.7). Constraint (5.8)

and (5.9) are stated as nonanticipativity constraints where the first stage variables

should be equal to each other. Finally, Constraint (5.10) states that decision variables

of the model are binary variables.

5.3 Solution Approach and Numerical Analysis

In this section, we perform a numerical analysis through the stochastic program-

ming model to seek insights for the general team allocation problem. More specifically,
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we try to determine whether general rules of thumb for team composition decisions

exist, which might aid hospitals for determining optimal team combinations. In our

analysis, we also address computational issues related to the stochastic programming

model, which runs into tractability issues. To this end, we propose a Lagrangian de-

composition method as a solution algorithm, as explained in the following subsection.

5.3.1 Solution through a Lagrangian Decomposition Procedure

Model (5.2)-(5.10) is linked in scenarios through the nonanticipativity constraints

(5.8) and (5.9). Let gψ(x, z) represent the objective function (5.2). Then by subject-

ing the nonanticipativity conditions to Lagrangian relaxation, we form the following

Lagrangian

L(x, y, λ, µ) =gψ(x, z) +
∑

k∈K

∑

j∈J

∑

m∈M

∑

ψ∈Ψ

πψλ
jψ
km

(
xjψ1km − xjψ

′

1km)

+
∑

k∈K

∑

n∈N

∑

j∈J

∑

l∈L

∑

m∈M

∑

ψ∈Ψ

πψµ
jlψ
knm(z

jlψ
1knm − zjlψ

′

1knm) (5.13)

where λjψkm and µjlψknm are the Lagrange multipliers. Notice that the formulation of

the nonanticipativity constraints (5.8) and the multiplication of the relaxed con-

straints (5.9) by πψ in the above Lagrangian account for the scenario probabilities,

and prevent the ill-conditioning in the Lagrangian dual as discussed by Louveaux

and Schultz (2003). This procedure is similar to the decomposition method described

by Carøe and Schultz (1999). We adapt this procedure and express the resulting

Lagrangian as:

L(x, y,λ, µ) = gψ(x, z) +
∑

k∈K

∑

j∈J

∑

m∈M

∑

ψ∈Ψ

{
λjψkm

(
− xjψ1km

)
+

∑

ψ′∈Ψ

+πψλ
jψ′

kmx
jψ
1km

}

+
∑

k∈K

∑

n∈N

∑

j∈J

∑

l∈L

∑

m∈M

∑

ψ∈Ψ

{
µjlψknm

(
− zjlψ1knm

)
+

∑

ψ′∈Ψ

πψµ
jlψ′

knmz
jψ
1km

}
(5.14)
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Problem (5.14) is a nonsmooth convex minimization problem, and can be solved

by subgradient optimization methods (Hiriart-Urruty and Lemaréchal, 1996). Notice

that this method reduces to solving |Ψ| problems of manageable size, each of which

corresponds to a single scenario.

The overall procedure to solve the stochastic team allocation problem is summa-

rized below.

Step 1. Perform Lagrangian relaxation on the problem, decomposing the problem

into individual scenario subproblems.

Step 2. Use subgradient algorithm to obtain an upper bound for the problem.

Step 2a. Solve the LP relaxation of constraints (5.2)-(5.10), and set the corre-

sponding dual values as the initial Lagrangian multipliers. Use a rounding heuristic

to obtain an initial lower-bound on the problem.

Step 2b. At each iteration j of the algorithm, determine a lower-bound for the

scenario subproblems by calculating the corresponding Lagrangian and selecting the

minimum.

Step 2c. Use the best lower-bounds for the scenario subproblems as the starting

solution for the subproblems at iteration j + 1.

Step 3. Calculate the duality gap upon convergence of the subgradient algorithm.

If the gap is less than or equal to the minimum acceptable level, stop. Else, if

computationally feasible, use branch and bound to close the duality gap, by branching

on the nonanticipativity conditions.

5.3.2 Numerical Results and Optimal Policy Insights

Our numerical analysis in this section utilizes the stochastic programming model

to seek insights for the surgical team allocation problem. More specifically, we try

to determine whether general rules of thumb for allocation decisions can be observed

that might aid hospitals for the optimal allocation of team members.
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CN ST Surgeon Anesthetist PA

Team-1 Medium High Medium Medium Medium
Team-2 High Low Low Low High
Team-3 Low Medium High High Low

Table 5.7. First stage team allocation decisions representing best team configura-
tions.

Computational tests based on the available data set were conducted using the

developed solution procedure. The performance data was extracted through the re-

gression analysis described in detail in Section 5.1. We implemented our model for

1024 scenarios where low and high realizations are used for each stochastic parame-

ter. Computations were performed on a PC with an Intel i7 Quad processor with 2.4

GHz speed and 8 GB of internal memory, using IBM ILOG CPLEX Version 12.1. Al-

though the computational studies were conducted on a single computer, the proposed

solution procedure can easily be parallelized by solving the scenario subproblems on

multiple machines to improve the solution times significantly. We obtained a con-

verged solution for 1024 scenarios in approximately 10 hours of time. The percent

gap between best upper and lower bounds was around 0.14% at convergence. Opti-

mal team allocation decisions for the fist stage are represented in Table 5.7, where

low, medium, and high refers to different experience levels for each team member as

defined in Section 5.1.

In Table 5.7 we present the optimal team configuration for the first decision epoch.

These results reflect the “ideal” configurations such that the maximum expected

operating room time is minimized over the three teams. Note that the problem setup

assumes the existence of team members from each possible experience level, and seeks

to identify the best team structures if all team members are to be utilized.

These results suggest some relevant practical insights for hospital schedulers.

First, it can be concluded that if a doctor has low experience, it is generally bet-

ter to match him/her with a more experienced PA. Similarly, if a doctor has high
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experience, it is fine to match him with a less experienced PA or scrub tech. These

findings also support the general observation that the surgeon and the PA are the

key actors and have primary control on robotic surgery, as both of them can perform

robot docking, positioning and anything that relates to the coordination of robot’s ac-

tivities during a surgery. Hence, the surgeon and the PA can generally substitute each

other, and at least one of them should have higher levels of experience for improved

performance in the surgery. We also note that if the scrub tech has low experience

in a surgical team, then either the surgeon or the PA should be more experienced.

Independent from other team member experiences, it is not recommended to include

low experienced ST, PA and surgeon in the same team. In the case that both the

surgeon and PA are not as experienced, then it is better to match them with an

experienced scrub tech. These results are also supportive of our observations that

ST plays an important role in surgery and sometimes could replace the PA if there

is no PA available. Another relationship exists between the CN and the anesthetist.

It can be observed that if the anesthetist has more experience, it is fine to have a

less experienced CN in the team, however if anesthetist has less experience, he/she

should be matched with a more experienced CN. This relationship between CN and

the anesthetist is also reasonable since both of them mostly work together during the

surgery room preparation and patient awakening phase. Given that the surgeon is

also sometimes active in the preparation process we can observe from the results that

a low experienced CN should be matched with an experienced surgeon or vice versa.

Besides first stage allocation decisions, for demonstration purposes we also provide

second stage allocation decisions for some selected scenarios in Table 5.8. These

are recourse decisions that would be implemented if it turns out that the observed

performances differ significantly from their expected levels. As it can be generally

observed, similar conclusions as above can be derived for the surgeon, PA and the ST

in the recourse decisions as well.
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Team Members

Sample Scenario Index Teams CN ST Surgeon Anesthetist PA
Team-1 Low High Medium Medium High

1 Team-2 Medium Low High Low Low
Team-3 High Medium Low High Medium
Team-1 High Low Low Low High

2 Team-2 Low High Medium High Medium
Team-3 Medium Medium High Medium Low
Team-1 High Low Medium High Low

3 Team-2 Low Medium High Medium Medium
Team-3 Medium High Low Low High
Team-1 Low Medium High High Low

4 Team-2 High Low Medium Medium Medium
Team-3 Medium High Low Low High
Team-1 High Low Medium Medium Medium

5 Team-2 Medium High High Low Low
Team-3 Low Medium Low High High

Table 5.8. Second stage team allocations for sample scenarios.

5.4 Conclusions

In this chapter, we investigated dynamic portfolio management approaches for

optimization of surgical team compositions in robotic surgeries. For this problem, we

developed stochastic dynamic model to identify policies for optimal team configura-

tions, where optimality is defined based on the minimum experience level required to

achieve the maximum attainable performance over all ranges of feasible experience

measures. We derived individual and dependent performance values of each surgical

team member by using data on operating room time and team member experience,

and then used them as inputs to a two-stage stochastic programming based framework

that we developed. In our analysis, we also addressed computational issues related to

the stochastic programming model, which runs into tractability issues. To this end,

we proposed a Lagrangian decomposition method as a solution algorithm. Finally,

we performed a numerical analysis based on real-world data for practical insights.

Although, our conclusions are based on the specific numerical data used, we be-

lieve that hospitals can benefit from the proposed models either through direct imple-

mentation for specific guidance, or through the indirect use of several policy results
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obtained. In our results we show that operation starting time and different operations

could affect operating room time while the breaks that STs and CNs use during the

surgery do not have significant effects on the overall operating room time. We fur-

ther obtain dependent and independent performance levels for each team member by

finding optimal experience levels for each case. By using these findings as an input to

our stochastic model we derive further insights related to the team configuration de-

cisions. An important characteristic of our study is that we build our models by using

real-world data through interactions with a hospital. As a first stochastic model of its

type in this application area, we aim to provide surgical team allocation guidelines for

hospitals through explicit consideration of uncertainty. As future work, this problem

could be combined with a staffing problem by considering time, costs, experiences,

and performances of individuals, rather than team member categories.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, we study specific types of resource allocation problems where

social benefits and non-quantitative objectives are specifically considered in resource

allocation decisions. Two applications of stochastic dynamic models on societal re-

source allocation are described throughout the thesis. In the first application, we

present strategic and tactical aspects involving the acquisition of foreclosed proper-

ties by nonprofits, while in the second application, we propose a two-stage stochastic

programming model for allocating team members to surgeries to minimize operating

room times.

In Chapters 1 and 2, we provide general introduction and literature review in-

formation describing the background for the problems investigated in the study. In

Chapter 3, the strategic dimension of the foreclosed housing acquisition problem is

described in detail, where we consider long term budget allocation decisions along

with acquisition decisions. We model the strategic foreclosed housing acquisition

problem as a two stage stochastic programming model and then expand this model

through a multi-stage structure involving gradual uncertainty resolution. We include

some further variations to reflect potential real life cases to obtain better practical

insights for CDCs and practitioners in their long term decisions. Some computational

analyses are also performed to demonstrate the applicability of the proposed models.

In Chapter 4, the tactical dimension of the foreclosed housing acquisition problem

is discussed where we mainly consider short term acquisition decisions in our modeling

framework. We investigate two practical planning situations based on whether the
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potentially accessible funds have an expiration date or not. Analytical results are

obtained for both cases. In addition, we describe policies to determine optimal overbid

rates to use when targeting a property for potential acquisition. We implement our

model and policies in a numerical setting by using operational data obtained from

a CDC. Based on this analysis, we observe a potential increase of around 17% in

expected total property value impacts, if the optimal policies were to be implemented

by the CDC that the data was obtained from.

In Chapter 5, we develop a data-based optimization model to identify policies for

surgical team compositions in robotic surgeries. As part of this analysis, we derive

individual and dependent performance values of each surgical team member by using

operational data obtained from a hospital. By using these performance values, we

develop a stochastic optimization model to obtain general insights that can be used

as decision guidelines. In our analysis, we also address computational issues related

to the stochastic programming model, which runs into tractability issues. To this

end, we propose a Lagrangian decomposition method as a solution algorithm for the

problem.

As potential future research, we note for the foreclosed housing acquisition prob-

lem that as in any model, accurate quantification of relevant measures is crucial for

the validity of implementations involving the presented approaches. Hence, in addi-

tion to the consideration of the variances of objectives and priorities between different

CDCs, future work may involve assessments of the accuracy of expert opinions used

in quantitative measurements with respect to their impacts on the optimization mod-

els. The observed real life implications of the proposed models on CDCs would also

constitute an important extension to our study in terms of its practical significance.

One additional issue that relates to foreclosed housing acquisition problem involves

the role of private investors as competitors to nonprofit CDCs. This becomes relevant

under stable market conditions, where prioritization of CDCs in acquiring properties
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is not implemented by funding agencies or lenders. Since acquisitions in such cases

will involve game theoretical aspects, it is possible that a game theory based analysis

approach is likely to be more valid for that problem setting. On the other hand it

is still possible to use the tactical decision framework in Chapter 4 by modifying the

probability of success function to account for the increased competition in bidding

for properties.

For future research in robotic surgery team composition problem, it is likely to

be of value to analyze staffing and scheduling policies by taking into account the

individual and joint experiences of team members. Current staffing and scheduling

policies are mostly done in an ad hoc fashion based on random assignments. Hence,

if such assignments were to be performed based on expected performance levels, it is

likely that overall surgery times can be reduced.

While there are certain tractability issues, one alternative approach to optimal

surgical team composition problem involves a Markov decision process based analysis

where analytical policies can potentially be derived. On the other hand, the combina-

torial nature of the problem might make it necessary to use simplifying assumptions

in such an approach, and this might take away from the validity of the model.
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APPENDIX A

APPENDIX FOR STRATEGIC SOCIETAL RESOURCE
ALLOCATION

A.1 Stochastic Parameters

Acquisition and redevelopment costs

Social returns

Total required budget to acquire all properties of a given category in a

neighborhood

A.2 Deterministic Parameters

Available budget

Financial returns

Collective efficacy measure of a given neighborhood

Probability that a given category property will be sold within a certain time

frame

Current number of owner occupied properties in a given neighborhood

Total number of properties in a given neighborhood

Distance between two neighborhoods
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Figure A.1. Supporting information for the stochastic treatment of acquisition and
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Figure A.2. Supporting information for the stochastic treatment of social returns.
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Figure A.3. Supporting information for the stochastic treatment of total required
budget for acquiring all properties and deterministic treatment of financial returns.

A.3 Values of Parameters used in Numerical Analysis for

Case 2x2

A.3.1 Deterministic Parameter Values

Budget : $5 million

Distance between neighborhoods: 0.9 miles

Standardized neighborhood efficacies: 0.3; 0.5

Current number of properties in neighborhoods: 2,640; 4,335

Current number of owner occupied properties: 1492; 2795

Probability of sale for categories: 0.5; 0.6

Expected financial returns: $13,960 and $15,780 for

neighborhood 1;

$22,350 and $25,410 for

neighborhood 2
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APPENDIX B

APPENDIX FOR TACTICAL SOCIETAL RESOURCE
ALLOCATION

B.1 Proofs of Analytical Results

Proof of Theorem 1

Kleywegt and Papastavrou (2001) note that for any given policy in the stochastic

dynamic knapsack problem, the value of the policy can be calculated by conditioning

on the availability time Ak after time t of a property k, its asking price Ck and PVI

value Rk as follows, where the availability rate λ and discount rate α are also included.

Given this, we have that:

V
(
bt
)
=

∫ b

C

∫ R̄

R

∫ ∞

t

λe−λ(ak−t)E

[
∑

i:Ai>t

e−α(Ai−t) max

{
V
(
bAi

)
, max
δbCiAi

{[
Ri

+ V
(
(b− Ci − CiδbCiAi)Ai

)]
p(δbCiAi) +

[
V
(
bAi

)
− g(Ci, δbCiAi)

]

[
1− p(δbCiAi)

]}}
∣∣∣∣∣Ak = a, Rk = r, Ck = c

]
daf(r, c)drdc (B.1)

=

∫ b

C

∫ R̄

R

∫ ∞

t

λe−λ(a−t)

{
e−α(a−t)

[
max

{
V
(
ba
)
,

max
δbca

{[
r + V

(
(b− c− cδbca)a

)]
p(δbca)

+
[
V
(
ba
)
− g(c, δbca)

][
1− p(δbca)

]}}

+ E

[
∑

i:Ai>a

e−α(Ai−a)max

{
V
(
bAi

)
, max
δbCiAi

{[
Ri

+ V
(
(b− Ci − CiδbCiAi)Ai

)]
p(δbCiAi)

+
[
V
(
bAi

)
− g(Ci, δbCiAi)

][
1− p(δbCiAi)
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∣∣∣∣∣Ak = a, Rk = r, Ck = c

]]}
daf(r, c)drdc

=
λ

α + λ

[∫ b

C

max
δbca

{∫ R̄

x(δbca)

rp(δbca)− g(c, δbca)
(
1− p(δbca)

)
f(r, c)dr

}
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}
dc (B.2)

Given that the planning horizon is infinite and that the distribution of asking prices

and PVI values are stationary, we have V
(
bt
)
= V

(
b). This implies that equation

(B.2) can be expressed as:

V
(
b
)
=

λ

α + λ

[∫ b

C

max
δbc

{∫ R̄

x(δbc)
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(B.5)

When a countable state space is assumed, the results of Yushkevich and Feinberg

(1979) or Kleywegt and Papastavrou (2001) can be used along with equation (B.5)

above to conclude that, after some simple algebraic manipulation, the value of the

optimal policy can be calculated using the equation:

αV ∗(b) =λ

∫ b

C

max
δbc

{∫ R̄

x(δbc)

p(δbc)
(
r −

[
V ∗(b)− V ∗(b− c− cδbc)

+
1− p(δbc)

p(δbc)
g(c, δbc)

])
f(r, c)dr

}
dc (B.6)

�

Proof of Theorem 2

For results 1 and 2, we note that based on Equation (4.5) in Theorem 1, optimal

overbid rate δ∗bc for a given asking price c can be expressed as:

δ∗bc = argmax
δbc

{∫ R̄

x(δbc)

p(δbc)
(
r − x(δbc)

)
f(r, c)dr

}
(B.7)

We first analyze when the function is on the right hand side is increasing or decreasing

with respect to δbc. Considering the derivative of the function with respect to δbc, we

get:

∂

∂δbc

∫ R̄

x(δbc)

p(δbc)
(
r − x(δbc)

)
f(r, c)dr =

∫ R̄

x(δbc)

∂
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[
p(δbc)

(
r − x(δbc)

)
f(r, c)

]
dr
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+
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where the relationship is due to the property that

d

dy

∫ h(y)
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f(x, y)dx =
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∂f(x, y)

∂y
dx+ f(h(y), y)
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dy
− f(g(y), y)

dg(y)

dy
(B.9)

Given that the second and third terms on the right hand side of Equation (B.8) are

zero, it follows that:
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= p′(δbc)
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= p′(δbc)E[r|r ≥ x(δbc)]P (r ≥ x(δbc))− p′(δbc)x(δbc)P (r ≥ x(δbc))

− p(δbc)x
′(δbc)P (r ≥ x(δbc)) (B.12)

Note that x′(δbc) ≈
∂
∂δbc

(
(1−p(δbc))g(c,δbc)

p(δbc)

)
under the assumption that ∂(V (b)−V (b−c−cδbc))

∂δbc

is small enough to be ignored. This implies that p(δbc)x
′(δbc) in the last term of

equation (B.10) above can be expressed as L(δbc) = Gc(1 − p(δbc) −
p′(δbc)
p(δbc)

(1 + δbc)).

It follows that:
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− x(δbc)−
L(δbc)

p′(δbc)

)
(B.13)

Clearly, the function maximized in equation (B.7) will be decreasing in δbc, if equa-

tion (B.13) is negative, i.e. if E[r|r ≥ x(δbc)]−x(δbc)−
L(δbc)
p′(δbc)

≤ 0 . Given that this func-

tion depends on x(δbc) which is a variable itself, a condition based on an upper bound

for the expression can be used to determine whether the function will be decreasing in

δbc for all possible threshold levels. To this end, let K̄ = maxk∈{R,R̄}{E(r|r ≥ k)−k}.

In addition, let L̄ = maxδbc∈[0,δ̄c]{L(δbc)} and L = minδbc∈[0,δ̄c]{L(δbc)}. Given this

notation and that p(δbc) is increasing in δbc, an upper bound for the left hand side of

the condition can be expressed to get the condition p′(δ̄c)K̄−L ≤ 0. If this condition

holds, then the optimal overbid rate is zero, regardless of the threshold policy used

by the CDC.

Similarly, a lower bound for the right hand side is when {E(r|r ≥ k) − k} = 0,

which implies that if L ≤ 0, then the derivative function is increasing in δbc for all

threshold levels. If so, the optimal overbid rate is the maximum possible value for

δbc, which is defined as δ̄c.

For result 3, we show when the function on the right hand side is convex in δbc,

which implies that the optimal overbid rate should be at the boundaries of the range

for δbc. The function to maximize over δbc is as follows.
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V (b)− V (b− c− cδbc) +

1

p(δbc)
Gc+

1

p(δbc)
Gcδbc

−Gc−Gcδbc

])
f(r, c)dr (B.15)

=

∫ R̄

x(δbc)

[
p(δbc)r − p(δbc)

(
V (b)− V (b− c− cδbc)

)
−Gc−Gcδbc +Gcp(δbc)

+Gcδbcp(δbc)
]
f(r, c)dr (B.16)
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We now show when the expression inside brackets in equation (B.16) is convex. We

consider the second derivative of the function as follows:

∂2

∂δ2bc

(
p(δbc)r − p(δbc)

(
V (b)− V (b− c− cδbc)

)
−Gc−Gcδbc +Gcp(δbc)

+Gcδbcp(δbc)
)

(B.17)

= p′′(δbc)r −
∂

∂δbc

[
p′(δbc)

(
V (b)− V (b− c− cδbc)

)

+
∂
(
V (b)− V (b− c− cδbc)

)

∂δbc
p(δbc)

]
+

∂

∂δbc

[
−Gc+Gcp′(δbc)

+Gcδbcp
′(δbc) +Gcp(δbc)

]
(B.18)

= p′′(δbc)r −

[
p′′(δbc)

(
V (b)− V (b− c− cδbc)

)
+ p′(δbc)

∂
(
V (b)− V (b− c− cδbc)

)

∂δbc

+ p′(δbc)
∂
(
V (b)− V (b− c− cδbc)

)

∂δbc
+ p(δbc)

∂2
(
V (b)− V (b− c− cδbc)

)

∂δ2bc

]

+

[
Gcp′′(δbc) +Gcp′(δbc) +Gcδbcp

′′(δbc) +Gcp′(δbc)

]
(B.19)

= p′′(δbc)
[
r +Gcδbc +Gc−

(
V (b)− V (b− c− cδbc)

)]
+ 2Gcp′(δbc) (B.20)

which is based on the assumption that
∂

(
V (b)−V (b−c−cδbc)

)

∂δbc
≈ 0. Given that the multi-

plier of p′′(δbc) is positive by the definition of PVI threshold and integration preserves

convexity, the function being maximized over δbc is convex, if p
′′(δbc) ≥ 0; i.e. when

p(δbc) is convex in δbc, which implies that δ∗bc is at the boundary of the range of δbc

values.

Moreover, the function being maximized is also convex when the expression in (B.20)

is negative for concave probability of success functions. Hence, if p′′(δbc) < 0, the

maximized function is convex when the following condition holds for all δbc ∈ [0, δ̄c]:

−p′′(δbc)
[
r +Gcδbc +Gc−

(
V (b)− V (b− c− cδbc)

)]
≤ 2Gcp′(δbc) (B.21)
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Note that by the definition of the PVI threshold we have that r ≥
(
V (b)−V (b− c−

cδbc)
)
and a lower bound on V (b)− V (b− c− cδbc) is R + 1−p(δbc)

p(δbc)
Gc. It follows that

for convexity :

− p′′(δbc)
[
r +Gcδbc +Gc− R−

(1− p(δbc)

p(δbc)

)
Gc

]
≤ 2Gcp′(δbc) (B.22)

⇒ −p′′(δbc)
[
r +Gc

(
δbc + 1−

1− p(δbc)

p(δbc)
− R

)]
≤ 2Gcp′(δbc) (B.23)

�

Proof of Corollary 1

For result 1, we note that the function in equation (B.7) is either convex or concave

depending on the problem parameters as defined by (B.23). If it is convex, then the

optimal overbid rate δ∗bc ∈ {0, δ̄c} as discussed in the proof of Theorem 2. If the

function is concave, then per equation (B.13), the maximizer for the function has to

satisfy the condition that p′(δbc)K − L(δbc) = 0 for a PVI threshold level k. Note

that if the solution of this equation does not lie within the range [0, δ̄c], then the

optimal overbid rate is either 0 or δ̄c depending on whether the function is increasing

or decreasing in that range.

For results 2 and 3, the optimal overbid rate corresponds to a root of a polynomial

defined by p′(δbc)K − L(δbc) = 0, which can expressed as Gc(1 − p(δbc) −
p′(δbc)
p(δbc)

(1 +

δbc)) − Kp′(δbc) = 0. Thus as the polynomial function is nonincreasing in K and

nondecreasing in c, the solution for the optimal overbid rate is also nonincreasing in

K and nondecreasing in c. �

Proof of Corollary 2

For result 1, we can express equation (B.12) for the uniformly distributed PVI

values as follows:
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p′(δbc)

∫ R̄

x(δbc)

r
1

R̄− R
dr − p′(δbc)x(δbc)

R̄ − x(δbc)

R̄−R
− L(δbc)

R̄− x(δbc)

R̄− R
(B.24)

If this derivative is negative, then δ∗bc = 0. Hence, we have that:

p′(δbc)
R̄2 − x(δbc)

2

2(R̄−R)
− p′(δbc)x(δbc)

R̄− x(δbc)

R̄− R
− L(δbc)

R̄ − x(δbc)

R̄−R
≤ 0 (B.25)

⇒ p′(δbc)(R̄− x(δbc))(R̄ + x(δbc))− 2p′(δbc)x(δbc)(R̄− x(δbc))

− 2L(δbc)(R̄− x(δbc)) ≤ 0 (B.26)

⇒ p′(δbc)(R̄ + x(δbc))− 2p′(δbc)x(δbc)− 2L(δbc) ≤ 0 (B.27)

⇒ p′(δbc)(R̄− x(δbc))− 2L(δbc) ≤ 0 (B.28)

An upper bound for the expression on the left hand side is when δbc = δ̄c, x(δbc) =

R, and L(δbc) = L . Hence, the function is decreasing in δbc and δ∗bc = 0, if the

condition p′(δ̄c)(R̄−R)−2L ≤ 0 holds. Similarly, δ∗bc = δ̄c if the derivative is positive,

and in that case result 2 in Theorem 2 applies.

For result 2, we use the derivative function given on the left hand side of (B.28),

along with the observation that in case of convexity the optimal overbid rate is either

0 or δ̄c. If the function being maximized is concave in δbc and a threshold k is used,

then p′(δbc)(R̄−k)−2L(δbc) = 0 should hold for the optimal overbid rate. If, however,

none of the solutions of the equation lie within the range [0, δ̄c], then again optimal

overbid rate is either 0 or δ̄c. �

Proof of Theorem 3 Item 1

The result implies that the optimal expected total PVI value is nondecreasing

in the amount of accessible funds. Note that for a given overbid rate δbc, the value

function can be represented as follows:

αV (b) =λ

∫ b

C

max
δbc

{∫ R̄

x(δbc)

p(δbc)

(
r − [V (b)− V (b− c− cδbc)
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+
1− p(δbc)

p(δbc)
g(c, δbc)]

)
f(r, c)dr

}
dc (B.29)

Note that upper limit on the first integral is b. Moreover, PVI values are accumu-

lated additively for every property that can be acquired with the current amount of

accessible funds. Hence, if the same acquisition policy is used for two fund levels b1

and b2 such that b1 > b2, then the definition of V (b) in (B.29) implies V (b1) ≥ V (b2).

�

Proof of Theorem 3 Item 2

This result implies that optimal PVI thresholds are nondecreasing in availability

rate λ. Note that the optimal PVI threshold x(δ∗bc) is defined based on

x(δbc) = V (b)− V (b− c− cδbc) +
1− p(δbc)

p(δbc)
g(c, δbc) (B.30)

Per the result in Theorem 1, for any fund level the value function is defined as follows:

V (b) =
λ

α

∫ b

C

∫ R̄

x(δbc)

p(δbc)
(
r−

[
V (b)−V (b−c−cδbc)+

1− p(δbc)

p(δbc)
g(c, δbc)

])
f(r, c)drdc

(B.31)

which implies that expected total PVI is nondecreasing in the availability rate λ.

Considering that this would apply both to V (b) and V (b − c − cδbc), and given the

fact that V (b) ≥ V (b−c−cδbc), it follows that V (b)−V (b−c−cδbc) is nondecreasing in

λ. This in turn implies that optimal PVI thresholds are nondecreasing in availability

rate λ. �

Proof of Theorem 3 Item 3

Note that the statement implies the concavity of V ∗(b) if and only if the optimal

PVI thresholds x(δ∗bc) are nonincreasing in the amount of accessible funds b for any
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property with asking price c. V ∗(b) is concave in b when the following holds for any

b1 ≥ b2.

V ∗(b1)− V ∗(b1 − c− cδ∗b1c) ≤ V ∗(b2)− V ∗(b2 − c− cδ∗b2c) (B.32)

⇔ V ∗(b1)− V ∗(b1 − c− cδ∗b1c) +
1− p(δ∗b1c)

p(δ∗b1c)
g(c, δ∗b1c) ≤ V ∗(b2)− V ∗(b2 − c− cδ∗b2c)

+
1− p(δ∗b2c)

p(δ∗b2c)
g(c, δ∗b2c) (B.33)

⇔ x(δ∗b1c) ≤ x(δ∗b2c) (B.34)

where the inequality in (B.33) is due to the approximate independence of the optimal

overbid rate δ∗bc and the fund level, i.e. due to having δ∗bc = δ∗c for all fund levels b. �

Proof of Theorem 3 Item 4

Note that the optimal PVI threshold x(δ∗bc) is defined based on

x(δbc) = V (b)− V (b− c− cδbc) +
1− p(δbc)

p(δbc)
g(c, δbc) (B.35)

Hence, to determine whether PVI thresholds will decrease or increase as a function

of δbc, we approximate the derivative of x(δbc) for given b and c as:

∂x(δbc)

∂δbc
∼=

∂

∂δbc

(
1− p(δbc)

p(δbc)
(Gc+Gcδbc)

)
(B.36)

= −

(
p′(δbc)[Gc +Gcδbc]

p(δbc)
+

1− p(δbc)[Gc+Gcδbc]p
′(δbc)

p2(δbc)

)

+
(1− p(δbc))Gc

p(δbc)
(B.37)

By setting expression (B.37) equal to zero, we get

−
p′(δbc)[Gc+Gcδbc]

p(δbc)

(
1 +

1− p(δbc)

p(δbc)

)
+

(1− p(δbc))Gc

p(δbc)
= 0 (B.38)
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⇒ − p′(δbc)[Gc+Gcδbc] + (1− p(δbc))Gcp(δbc) = 0 (B.39)

⇒ Gc(−p′(δbc)− δbcp
′(δbc)) +Gc(p(δbc)− (p(δbc))

2) = 0 (B.40)

⇒ p(δbc)− p(δbc)
2 − p′(δbc)− δbcp

′(δbc) = 0 (B.41)

⇒ p(δbc)(1− p(δbc))− p′(δbc)(1 + δbc) = 0 (B.42)

Note that ∂
2x(δbc)

∂δ2
bc

≤ 0 as it follows from differentiating the left hand side of equation

(B.41). Hence x(δbc) is concave in δbc. Let δ̇bc be a solution to the equation p(δbc)
(
1−

p(δbc)
)
− p′(δbc)(1 + δbc) = 0. Given the concavity of x(δbc) in δbc, we note that if

there is a unique solution δ̇bc ∈ [0, δ̄c] or if δ̇bc > δ̄c, then for all δbc ∈ [0, δ̇bc], the

PVI threshold increases as a function of the overbid rate. For all, δbc ∈ [δ̇bc, δ̄c] or if

δ̇bc < 0, the PVI threshold decreases as a function of the overbid rate. �

Proof of Theorem 3 Item 5

Assume that the PVI threshold x(δbc) is nondecreasing in δbc. Without loss of

generality, let x(δbc) = R, which implies by definition that when the overbid rate δbc

is used, the critical fund level Ḃ(δbc) = b. Now consider an overbid rate δ′bc such that

δ′bc > δbc. Given that x(δbc) is nondecreasing in δbc, this implies x(δ′bc) ≥ x(δbc) = R,

which in turn indicates that the critical fund level Ḃ(δ′bc) ≥ Ḃ(δbc). We note through

a similar argument that if the latter condition holds, then it would imply that x(δbc)

has to be nondecreasing in δbc. �

Proof of Theorem 3 Item 6

Since ∂V (b)
∂t

= 0 and
∂x(δ∗

bc
)

∂t
= 0, the critical fund level value where x(δ∗bc) = R is

the same for different time values. Hence, critical fund level is constant over time.

Moreover, given that
∂x(δ∗

bc
)

∂t
= 0, the PVI threshold is constant over time. Hence, it

follows from conditions (B.32)-(B.34) that this implies marginal value of accessible

funds is constant over time. �

161



www.manaraa.com

Proof of Theorem 4

We express the value function at time t as follows by conditioning on whether a

new property becomes available in the next ∆t time units or not:

V ∗
(
bt
)
= (1− α∆)

{
λ∆

[[ ∫ b

C

max
δbct

{∫ R̄

x(δbct)

(r + V ∗((b− c− cδbct)t+∆)p(δbct)

+ (V ∗(bt+∆)− g(c, δbct))(1− p(δbct))f(r, c)dr

}
dc

]

+

∫ b

C

∫ x(δbct)

R

V ∗(bt+∆)f(r, c)drdc

]
+ (1− λ∆)V ∗(bt+∆)

}
(B.43)

= (1− α∆)λ∆

[[ ∫ b

C

max
δbct

{∫ R̄

x(δbct)

(r + V ∗((b− c− cδbct)t+∆)p(δbct)

+ (V ∗(bt+∆)− g(c, δbct))(1− p(δbct))f(r, c)dr

}
dc

]

+

∫ b

C

∫ x(δbct)

R

V ∗(bt+∆)f(r, c)drdc

]

+ V ∗(bt+∆)−∆(α + λ− λα∆)V ∗(bt+∆) (B.44)

⇒
V ∗(bt)− V ∗(bt+∆)

∆
= (1− α∆)λ

[[ ∫ b

C

max
δbct

{∫ R̄

x(δbct)

(r + V ∗((b− c− cδbct)t+∆)

p(δbct) + (V ∗(bt+∆)− g(c, δbct))(1− p(δbct))f(r, c)dr

}
dc

]

+

∫ b

C

∫ x(δbct)

R

V ∗(bt+∆)f(r, c)drdc

]
− (α + λ− λα∆)V ∗(bt+∆) (B.45)

Letting ∆ → 0;

∂V
(
bt
)

∂t
= λ

[ ∫ b

C

max
δbct

{∫ R̄

x(δbct)

(r + V ∗((b− c− cδbct)t)p(δbct) + (V ∗(bt)

− g(c, δbct))(1− p(δbct))f(r, c)drdc+

∫ b

C

∫ x(δbct)

R

V ∗
(
bt
)
p(δbct)f(r, c)drdc

]

− (α + λ)V ∗
(
bt
)

(B.46)

= λ

[ ∫ b

C

max
δbct

{∫ R̄

x(δbct)

(r + V ∗((b− c− cδbct)t)p(δbct) + (V ∗(bt)

− g(c, δbct))(1− p(δbct))f(r, c)dr

}
dc+

[ ∫ C̄

C

∫ R̄

R

V ∗
(
bt
)
f(r, c)drdc
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−

∫ b̄

C

∫ R̄

x(δbct)

V ∗
(
bt
)
f(r, c)drdc

]]
− (α+ λ)V ∗

(
bt
)

(B.47)

= λ

[ ∫ b

C

max
δbct

{∫ R̄

x(δbct)

[
(r + V ∗((b− c− cδbct)t)p(δbct)

+ (V ∗(bt)− g(c, δbct))(1− p(δbct))− V ∗(bt)

]
f(r, c)dr

}]
dc

− (α + λ)V ∗(bt) + λV ∗(bt) (B.48)

Hence, the optimal value function V ∗(bt) is the solution of the differential equation:

∂V
(
bt
)

∂t
= λ

∫ b

C

max
δbct

{∫ R̄

x(δbct)

p(δbct)(r − [V ∗
(
bt
)
− V ∗((b− c− cδbct)t)

+
1− p(δbct)

p(δbct)
g(c, δbct)])f(r, c)dr

}
dc− αV

(
bt
)

(B.49)

�

Proof of Theorem 5

Note that equation (B.7) is equivalent to the following for the case with fund

expiration:

δ∗bct = argmax
δbct

{∫ R̄

x(δbct)

p(δbct)
(
r − x(δbct)

)
f(r, c)dr

}
(B.50)

Following the same procedure as in the no fund expiration case, the derivative of the

function to be maximized is:

p′(δbc)E[r|r ≥ x(δbct)]P (r ≥ x(δbct))− p′(δbct)x(δbct)P (r ≥ x(δbct))

− p(δbct)x
′(δbct)P (r ≥ x(δbct)) (B.51)

Note that x′(δbct) ≈
∂

∂δbct

(
(1−p(δbct))g(c,δbct)

p(δbct)

)
under the assumption that ∂(V (bt)−V ((b−c−cδbc)t)

∂δbct

is small enough to be ignored. This implies that x′(δbct) is independent of time and

thus the same results for the infinite horizon case apply. �
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Proof of Theorem 6 Item 1

The same procedures applied for the proofs of the corresponding results in the no

fund expiration case can be used to show that these results hold independent of time.

More specifically, for result 1 we note that the upper limit on the integral in the value

function definition is b, and a larger value here would imply a larger expected total

PVI without any implication of the time. The other results follow from the fact that

optimal overbid rates are approximately independent of time. �

Proof of Theorem 6 Item 2

The statement implies that the expected total PVI value is nonincreasing in time.

We show through the discrete time approximation of the optimal value function that

this holds for all fund levels. Recall that this approximation is expressed as follows:

V ∗(bt−T/τ ) =(1− α)V ∗
(
bt
)
+
T

τ
λ

∫ bt

C

max
δbct

{∫ R̄

x(δbct)

p(δbct)
(
r −

[
V ∗

(
bt
)

− V ∗
(
(b− c− cδbct)t

)
+

1− p(δbct)

p(δbct)
g(c, δbct)

])
f(r, c)dr

}
dc (B.52)

Note that the second component on the right hand side is nonnegative by definition.

Given that α ≥ 0, we get V ∗(bt−T/τ ) ≥ V ∗(bt) for any T/τ at all fund levels. �

Proof of Theorem 6 Item 3

Let ∂V (bt)
∂b

be the marginal value of accessible funds. Per Theorem 6 item 2, we

have that PVI value V (bt) is nonincreasing over time. Given that ∂
∂t
∂V (bt)
∂b

= ∂
∂b
∂V (bt)
∂t

per Young’s theorem, we have that ∂V (bt)
∂b

is also nonincreasing in time. �

Proof of Theorem 6 Item 4

The change in the optimal PVI threshold over time is expressed as:

∂x(δ∗bct)

∂t
=
∂
(
V
(
bt
)
− V

(
(b− c− cδ∗bct)t) +

1−p(δ∗
bct

)

p(δ∗
bct

)
g(c, δ∗bct)

)

∂t
(B.53)
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We have through the result in Theorem 2 Item 3 that:

∂
(
V
(
bt
)
− V

(
(b− c− cδ∗bct)t)

)

∂t
≤ 0 (B.54)

In addition, Theorem 5 establishes the independence of δ∗bct over time, implying that

the derivative of the last component in the numerator of (B.53) with respect to t is

zero. It follows that
∂x(δ∗

bct
)

∂t
≤ 0. �

Proof of Theorem 6 Item 5

Without loss of generality, let x(δbct) = R, which implies by definition that when

the overbid rate δbct is used, the critical fund level at time t is Ḃ(δbct) = b. Now

consider the same overbid rate used at time t′ such that δbct = δbct′ where t′ > t.

Given that x(δbct) is nondecreasing in t due to Theorem 6 Item 4, this implies x(δbct′) ≥

x(δbct) = R, which in turn indicates that the critical fund level Ḃ(δbct′) ≥ Ḃ(δbct). �

Proof of Theorem 6 Item 6

We show the correctness of this statement through a similar argument as in the

proof of Theorem 3 Item 5 above. Assume that the PVI threshold x(δbct) is nonde-

creasing in δbct. Without loss of generality, let x(δbct) = R, which implies by definition

that when the overbid rate δbct is used, the critical time Ṫ (δbct) = t. Now consider

an overbid rate δ′bct such that δ′bct > δbct. Given that x(δbct) is nondecreasing in δbct,

this implies x(δ′bct) ≥ x(δbct) = R, which in turn indicates that the critical time

Ṫ (δ′bct) ≥ Ṫ (δbct). We note through a similar argument that if the latter condition

holds, then it would imply that x(δbct) has to be nondecreasing in δbct. �

Proof of Theorem 6 Item 7

Assume that the PVI threshold x(δbct) is nonincreasing in b. Without loss of

generality, let x(δbct) = R, which implies by definition that when the overbid rate δbct
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is used, the critical time Ṫ (δbct) = t. Now consider the same overbid rate used at

fund level b′ such that δbct = δb′ct where b
′ > b. Given that x(δbct) is nonincreasing

in b, this implies x(δb′ct) ≤ x(δbct) = R, which in turn indicates that the critical time

Ṫ (δb′ct) ≤ Ṫ (δbct). We note through a similar argument that if the latter condition

holds, then it would imply that x(δbct) has to be nonincreasing in b. �
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scheduling: A literature review. European Journal of Operational Research, 201(3):
921–932, 2010.

Carøe, C. and Schultz, R. Dual decomposition in stochastic integer programming.
Operations Research Letters, 24(1):37–45, 1999.

Cassera, M., Zheng, B., Martinec, D., Dunst, C. M., and Swanström, L. Surgical time
independently affected by surgical team size. The American Journal of Surgery,
198(2):216–222, 2009.

Chalabi, Z., Epsten, D., McKenna, C., and Claxton, K. Uncertainty and value of
information when allocating resources within and between healthcare programmes.
European Journal of Operational Research, 191(2):530–539, 2008.

Chen, C. Foreclosures drag on U.S. recovery. Technical report, Moodys Analytics,
2009. URL https://www.economy.com/dismal/article_free.asp?cid=116439.

Chen, S. and Lin, L. Modeling team member characteristics for the formation of a
multifunctional team in concurrent engineering. IEEE Transactions on Engineering
Management, 51(2):111–124, 2004.

Cheng, L., Subrahmanian, E., and Westerberg, A. Design and planning under un-
certainty: issues on problem formulation and solution. Computers and Chemical
Engineering, 27(6):781–803, 2003.

168



www.manaraa.com

Choi, S. and Wilhelm, W. E. An approach to optimize block surgical schedules. Eu-
ropean Journal of Operational Research, 2013. URL http://www.sciencedirect.

com/science/article/pii/S0377221713008631. Accepted Article.

CNN. Home values plummet $500 billion., 2009. URL http://money.cnn.com/

2009/12/09/real_estate/home_value_loss/index.htm.

Collette, Y. and Siarry, P. Multiobjective Optimization: Principles and Case Studies.
Berlin: Springer, 2003.

Community Wealth. Overview: Community development corporations, 2012. URL
http://www.community-wealth.org/strategies/panel/cdcs/index.html.

Creators.com. Robotic surgery is all the rage, but price is high, 2010. URL https:

//www.creators.com/health/david-lipschitz.html.

Damodaran, A. The value of synergy, Working Paper, 2005. URL http://people.

stern.nyu.edu/adamodar/pdfiles/papers/synergy.pdf.

Dantzig, G. B. Optimal solution of a dynamic Leontief model with substitution.
Econometrica, 23(3):295–302, 1955.

Dizdar, D., Gershkov, A., and Moldovanu, B. Revenue maximization in the dynamic
knapsack problem. Theoretical Economics, 6(3):157–184, 2011.

Dowsland, K. A. Nurse scheduling with tabu search and strategic oscillation. Euro-
pean Journal of Operational Research, 106(2):393–407, 1998.

Drew, D., Skitmore, M., and Lo, H. P. The effect of client and type and size of
construction work on a construction’s bidding strategy. Building and Environment,
36(3):393–406, 2001.

Ebme Articles. Robotic-assisted surgery, 2013. URL http://www.ebme.co.uk/

articles/clinical-engineering/83-robotic-assisted-surgery.

Eckenrode, R. T. Weighting multiple criteria. Management Science, 12(1):180–192,
1965.

Francis, P., Smilowitz, K., and Tzur, M. The period vehicle routing problem with
service choice. Transportation Science, 40(4):439–454, 2006.

Fransen, A., Van, J., Merién, A., Wit-Zuurendonk, L., Houterman, S., Mol, B., and
Oei, S. Effect of obstetric team training on team performance and medical technical
skills: a randomised controlled trial. BJOG: An International Journal of Obstetrics
& Gynaecology, 119(11):1387–1393, 2012.

Frisch, M. and Servon, L. J. CDCs and the changing context for urban community
development: A review of the field and the environment. Community Development,
37(4):88–108, 2006.

169



www.manaraa.com

Galster, G., Levy, D., Sawyer, N., Temkin, K., and Walker, C. The impact of commu-
nity development corporations on urban neighborhoods. Technical report, Wash-
ington, D.C.: The Urban Institute, 2005.

Galster, G., Tatian, P., and Accordino, J. Targeting investments for neighborhood
revitalization. Journal of the American Planning Association, 72(4):457–474, 2006.

Gass, A. Implementing the neighborhood stabilization program. Technical report,
NeighborWorks America, Neighborhood Reinvestment Corporation, 2010.

GLG. Surgical robot claims, 2013. URL http://www.thegilbertlawgroup.com/

practice-areas/product-liability/surgical-robots/.

Harding, J. P., Rosenblatt, E., and Yao, V. W. The contagion effect of foreclosed
properties. Journal of Urban Economics, 66(3):164–178, 2009.

Harper, P., Powell, N., and Williams, J. Modeling the size and skill-mix of hospital
nursing teams. Journal of the Operational Research Society, 61(5):768–779, 2009.
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